
2
0
1
6
.1
E

Cold War
computers

Setting up a
hackerspace

Build a
medieval
computer

EXCLUSIVE PLAYABLE
DEMO: ILLUMINATUS

Computer culture magazine – International Edition

2016.1E
SK R O L L I . F I

WHY
DEMOS
SUCK

Dumpster
diving for
hardware

http://skrolli.fi/illuminatusdemo/
http://skrolli.fi

2016.1E2

  3	 Editorial
Slow and steady

  4	 Pico-8
Fuel your imagination with a fantasy console.

10	 Doomsday machines
Did computers take us to the brink of nuclear war?

13	 256-byte programs
Short binaries as QR codes.

14	 History of Soviet and Eastern
	 Bloc computers

Computing behind the Iron Curtain.

19	 Column: Mikko Heinonen
We upgraded your device, it’s ruined!

20	 Abandonware
	 – the controversial software graveyard

Reviving classics in the grey area.

24	 Internets before the Internet
	 – the rise and fall of modem BBSes

Hello, remote computer, any new bulletins?

28	 Beautiful, forgotten UNIX hardware
Vintage workstations can still work for you.

32	 Hidden bursts
How secure are old wireless keyboards?

34	 Escaping Big Brother
Surfing under the radar.

38	 Why demos suck
What makes all those cubes meaningful?

42	 How SEGA dropped the ball
From hero to zero in ten years.

46	 Salvaging viable hardware
Build a cluster from the dumpster.

50	 Building a computer in the past
Important advice for time travellers.

54	 Machine code:
	 The gateway to the computer’s soul

The closest you can get to your hardware.

62	 Entry-level soldering
An easy building project.

66	 Hackerspaces and the thrill of making things
Share tools, share the fun.

70	 ILLUMINATUS
The greatest space game ever only had one problem. It was not real.

3

Ville-Matias Heikkilä
editor-in-chief

Skrolli
Computer culture magazine

Contact toimitus@skrolli.fi
Ircnet: #skrolli
skrolli.fi

Editor-in-Chief Ville-Matias Heikkilä
Managing Editor Annika Piiroinen

Art Director Nasu Viljanmaa
Image Editor Laura Pesola

Advertising Sales Jari Jaanto
Finances Anssi Kolehmainen

Editors Mikko Heinonen, Päivi Julin,
Jukka O. Kauppinen, Ronja Koistinen,
Toni Kuokkanen, Teemu Likonen,
Mitol Meerna, Manu Pärssinen,
Janne Sirén, Suvi Sivulainen

Contributors to this
issue

Albert Laine, Tapio Lehtimäki, Juuso
Metsävuori, Andrew Gryf Paterson,
Laura Pesola, Visa-Valtteri Pimiä,
Ville Ranki, Oona Räisänen, Santeri Tani,
Mikko Torvinen, Kalle Viiri

Translation Mikko Heinonen

Proofreading Michael Harlan Lyman

Publisher Skrolli ry

Printed by Hämeen Kirjapaino, Tampere,
ISSN 2323-8992 (print)
ISSN 2323-900X (online)

Slow and steady
Skrolli is a paper magazine about computers, born in a world
where paper media was already dying out because of computers.
Contradictory and utterly insane, many would think.

T o most people, computers are like social media feeds – short-
lived, ever-changing and historically shallow. Any exceptions
to the rule can be easily put under the comfortable umbrella

of “retro”. This is also the view endorsed by much of the mainstream,
consumption-oriented computer journalism.

We at Skrolli see things differently. To us, there is no “retro”. Comput-
ing culture, like any other culture, involves traditions, historical strands,
ideas and material objects. They can always be used as a basis for some-
thing new – regardless of whether they are considered obsolete or not.
And there is a lot in computing culture that is worth putting on paper
and storing in the attic for decades. We are slow and proud of it!

But what is computing culture in a world where computers engulf
every aspect of people's lives? We focus on where computing is irredu
cible: if you only casually chat or play Go with another person over the
Internet, it is not really computer culture, because you can do it without
a computer as well. Doing it with an AI, however, would be closer to the
core, and the history and design of such AIs would be very close to what
we are about.

Skrolli is a voluntary project run by a group of computer enthusiasts
from Finland. At present, the project covers its running expenses, but
none of us can yet do this for their main job. This is mainly due to the
smallness of the audience that understands Finnish, and a large reason
for the existence of this international issue is our desire to turn the hob-
by into a profession.

We have already published thirteen issues in our native language,
and the articles in this issue are mostly translations of what was already
available. You can probably notice our background in the emphases and
some other peculiarities in the articles. Future issues are likely to have
international contributions – maybe even from you – and, thus, more
diversity as well.

Nevertheless, we picked some of our best. We gave the backers a trans-
lated list of articles and asked what they would like to see, and included
some of our favorites in the mix. The variety of articles is somewhat
similar to a typical Finnish issue – including hacking, programming,
gaming, culture, history, hardware and a little bit of weirdness.

We hope you enjoy the first international issue of Skrolli! We also
hope you spread the word about it and encourage your friends to buy it
– because our future depends on it!

P.S. We promised our backers something extra, since our Indiegogo
campaign was 127% funded. Please find a virtual cover disk with a play-
able demo on the cover!

Editorial

Cover image:
Tomi Väisänen

TUXERA
YOUR DATA - WHERE YOU WANT IT

HÄMEEN KIRJAPAINO OY

4041 0209
Painotuote

mailto:toimitus%40skrolli.fi?subject=
http://skrolli.fi

Software

2016.1E4

D uring their careers,
many computer
hobbyists have tried
countless device and
software platforms.

Some have even surveyed them inten-
tionally in order to play their games
or use them to create art. This sort
of exploration also creates an under-
standing of the features that make a
platform comfortable or interesting to
work with. The fantasy console Pico-8
is one idea of an interesting platform.

The Pico-8 is probably best de-
scribed as an emulator for a system
that does not exist. Its overall spirit is
very 8-bit and you might envision it as
a handheld console like the Game Boy
Color. The screen offers a resolution of
128 × 128 pixels at 16 colours and there

are four chiptune channels for sound.
However, this is not merely an exer-

cise in alternative history; the design
of the Pico had very different starting
points than devices that might seem
similar on the surface. Instead of try-
ing to make the most out of a limited
amount of logic, it offers a small set of
building blocks that are as fun to play
with as possible. The developer hopes
that, over time, the technical frame-
work of the Pico-8 would give rise to a
unique aesthetic that would be expres-
sive in spite of its minimalism.

First glance
The Pico-8 appears slightly schizo-
phrenic. After start-up, it enters a
mode that is more reminiscent of a
home computer with a keyboard and

mouse than a game console. The com-
mand interpreter allows for loading
software and typing in print com-
mands, for example. By pressing Esc,

Pico-8
Fascinating fantasy console
When the existing machines no longer inspire you, it is time to switch to imaginary ones.
Story by Visa-Valtteri Pimiä, Ville-Matias Heikkilä
Images by Laura Pesola, Ville-Matias Heikkilä

After start-up, the Pico-8 enters a command
line console that can be used to input Lua
commands.

5

you can enter an editor that has ded-
icated sections for code, graphics and
sound. However, only the internal
applications can access the keyboard,
mouse or all parts of the file system
– to external applications, the Pico is
a game console with ROM cartridges
and a two-button pad controller.

Pico speaks Lua, a limited but fairly
expressive language that was originally
designed for game scripting. In other
words, the Pico virtual machine does
not emulate any processor in itself –
not even one that executes bytecode.
Everything is written in Lua, and this
is the lowest level a programmer can
access.

There are two main formats for dis-
tributing games and other software.
The cartridges, or carts, are PNG
pictures that have the appearance of
a physical cartridge and sticker, but
whose lower bits store the program
code and graphics and sound data like
a watermark. Software exported to

HTML5 format can be run on modern
Web browsers without the actual Pico-
8 software.

Bounds and limitations
The most visible technical feature of
the Pico is the 128 × 128 pixel screen
with a fixed 16-colour palette. The
palette has a fairly personal and easily
identifiable choice of colours, and its
designer has clearly had more of an eye
for colour than the average engineer.

Although Pico games typically use
background maps consisting of 8 × 8
pixel blocks, and 8 × 8 pixel sprites on
top of them, this is not a limitation.
The graphics mode is a pure pixel buff-
er that can be used to draw anything
– and the machine is also fast enough
to run 1990s demo effects smooth-
ly. However, the platform encourages
the use of 8 × 8 pixel blocks by offer-
ing functions for drawing maps and
sprites that are faster than using your
own code to do the same pixel by pixel.

The cart can hold 15,360 bytes of
compressed code. The maximum
length in the editor is 65,536 charac-
ters or 8,192 tokens in tokenised form.
These limits are not easily met – even
many of the best games are clearly be-
low these figures. On the other hand,
the existence of this limit encourages
simplicity and linearity, as there is no
room for enormous game engines and
multi-layered abstractions.

The cart has 12,544 bytes reserved
for graphics and 4,608 bytes for sound.
Of course, these data areas can be
used for other purposes – the memory
handling commands allow it to be ac-
cessed at the byte level. Upon program
start-up, the contents of the cartridge’s
data side are copied into user RAM
where the program can modify it, if
necessary. User RAM also includes
slightly under 7 kilobytes of space re-
served for the user and 8 kilobytes of
video memory.

The graphics data consists of 8 × 8
pixel sprites where the entire colour
palette can be used freely. The maxi-
mum number of sprites is 256 and the
map consists of 128 × 32 sprites. It is
possible to double the size of the map
by settling for 128 sprites.

On the sound side, the equivalent
of a ”sprite” is a sound effect (sfx) that
consists of 32 note locations. Each
note location contains the note and the

Game cartridge. In theory, you could scan this
picture and execute the binary on the Pico-8.

The sprite editor is used for sprites as well as
larger pixel art.

The map editor.

This mode of the sound effects editor is bet-
ter suited for music. Actual sound effects are
usually drawn as curves.

The music editor combines patterns into
songs similarly to a tracker.

If the code editor seems too limited, you can
always load the .p8 files in an external text
editor.

2016.1E6

waveform, volume and effect; there are
8 different types of each of these. The
playback speed can be altered; lower
speeds are better suited for music than
sound effects.

Similarly to tracker music, a song
consists of patterns that define which
sound effect is played on each of the
four channels. There is space for 64
patterns, which can hold several songs
when loops and pattern end flags are
used.

While the graphics side allows
everything to be built from individual
pixels, the user cannot access the ”reg-
isters” of the sound system. In theory,
you could build a player routine by

modifying the sound data in real time,
but the limits of the virtual machine’s
timing might not allow this. However,
you can easily create different experi-
mental soundscapes by writing ran-
dom data in the sound effect memory.

In addition to the program code,
data RAM and cartridge ROM, the
Pico offers 256 kilobytes of space for
the Lua interpreter. This is a relatively
large amount when compared to the
Pico’s other memory spaces, but it will
fill up easily with large tables, for ex-
ample. One element of a number table
takes up eight bytes, half of which is
taken up by the actual data. Each num-
ber consists of a 16-bit integer part and

a 16-bit fraction, which means that bit
arithmetic operations can be used to
compress them.

When running low on space, Pico
can also read data from other ROM
cartridges and even write to them. Pro-
gram code has a strict limit, however;
it can only be executed from the origi-
nal cartridge. Lua in itself includes the
possibility to execute data as code, but
it has been removed in the Pico-8. This
means that those requiring more code
space will need to build their own vir-
tual machine.

The Pico-8 does not execute Lua code
as quickly as the computer’s processor
allows. Execution times have been de-

Celeste by Matt Thorson and Noel Berry is a platform game with a
steep difficulty curve.

Ennuigi by Josh Millard is more of a minimalist art film than a game.
It is a mellow, melancholic interpretation of the story of Super Mario
Bros.

The atmospheric Dusk Child by Sophie Houlden mixes together adven-
tures, puzzles and platforming.

Picoracer2048 is a line vector based racing game that is, unfortunately,
single player only.

7

fined for the different functions. This
speed limit will rarely lead to problems
during the development of typical Pico
software, but it standardises the limits
of the platform and prevents spiralling
hardware requirements. According to
the authors, a first-generation Rasp-
berry Pi is enough for running even
the most demanding Pico software at
full speed.

How to code on it
Lua is written in all capitals and is,
therefore, reminiscent of BASIC. For
example, many people will remember
the BASIC version of the following in-
finite text printout loop:

::START::
PRINT "HELLO"
GOTO START

Instead of the Lua standard library,
Pico offers a fairly limited selection
of BASIC-type functions: drawing
commands, a couple of sound com-
mands, controller input functions and
a few functions for memory handling,
mathematics, bit arithmetic and string
handling.

The basic drawing commands can
be used to draw pixels, rectangles,
lines, circles, text, sprites and back-
ground maps. The palette colours
can be switched for the drawing com-
mands and you can also make colours
transparent in terms of the sprites and
background graphics.

Drawing moving graphics is more
reminiscent of a PC than the 8-bit
home computers. The Pico has no
”hardware sprites” or ”hardware
scrolling”. Instead, the display is usu-
ally redrawn for each refresh: clear the
screen, draw the background and then
draw the necessary sprites.

There are two functions available for
drawing sprites: spr() draws an indi-
vidual 8 × 8 pixel sprite at the provid-
ed coordinates, whereas sspr() draws
an arbitrary area from a sprite sheet
at arbitrary scaling. The scaling func-
tion enables a number of tricks that are
fairly costly on most classic hardware,
such as Doom-type texture mapping.

The programmer may place draw-
ing commands in an endless loop, but

a more elegant solution is to define a
function called _draw() and call it at
every screen refresh, i.e. 30 times per
second. The earlier example would ap-
pear as follows:

FUNCTION _DRAW()
 PRINT "HELLO"
END

The game controller is read with the
function btn() that accepts the button
number as a parameter and returns
whether the button is pressed. A pro-
gram that moves sprite number 0 to
the left and right might look like this:

X=64
FUNCTION _DRAW()
 CLS()
 SPR(0,X,112)
 IF BTN(0) THEN X=X-1 END
 IF BTN(1) THEN X=X+1 END
END

In order to display anything on the
screen, you of course need to draw
something for sprite 0 in the sprite ed-
itor.

Sometimes, _draw() will contain so
many tasks that it cannot be run at
every screen refresh. In this case, the
programmer should move the updat-
ing of the game state to the _update()
function that is – theoretically – called
30 times per second. Theoretically,
because it is not a timer interrupt; if
_draw() takes longer, it is called several
times in a row.

Double-buffering is not a concern,
as the changes to the video memory
will only appear after _draw() has been

The Pico-8 Zine is not as thick as Skrolli
magazine, but it is also available as a print
magazine as well as in PDF format.

Paniq from the group Duangle is one of the demosceners interested
in the Pico.

Hyperspace by J-Fry demonstrates that the Pico-8 can also do smooth,
textured 3D graphics. As a game, it is nothing special.

2016.1E8

completed. On the other hand, the
user RAM could only fit a full-screen
double buffer if some of the sound ef-
fects were cleared out of the way.

The sound side offers the functions
sfx() and music(). The former plays the
sound effect given as a parameter on
the first available sound channel, the
latter starts playing music from the
pattern number given as a parameter.

Makers of small 2D games need not
concern themselves with the speed of
the commands, but it will become an
issue when testing the limits of the
platform. The function pset() refresh-
es all the pixels on the screen approxi-
mately one and a half times during one
screen refresh. Writing directly into
video memory with the poke() func-
tion is about three times faster. How-
ever, using the memcpy() and mem-
set() functions is up to ten times faster,
and the background graphics drawing
command map() is equally fast.

Blocks are fun to play with
Pico contains many features that are
reminiscent of 1980s home comput-
ers. Instead of sticking to traditional
or technological realism, it emphasises
the fun of creating and block aesthet-
ics. Those who are bothered by this
should consider the fantasy nature of
the platform: fantasy worlds do not al-
ways make a lot of sense, but they pro-
vide the setting for interesting events
and fuel the imagination.

If we had to summarise the spirit
of the Pico-8 into one word, it would

probably be ”straightforward”. Some
of this stems from the 8-bit computers
and their BASIC: you can start writ-
ing your program immediately after
”powering on” and never need to think
about OS requirements, APIs or differ-
ent execution environments. Things
are simple and tangible: specific bits in
a specific memory location will always
mean a block of a specific colour in a
specific place on the screen.

The concept goes further than that,
however: there is no counting of clock
cycles and raster lines, no colour cell
boundaries, no juggling back and
forth with utilities and files. The limits
of the platform prevent arduous and
time-consuming fine-tuning.
Since there are no ad-
justable palettes, sample
systems or machine code
instructions, you do not
need to tune them. And the
small number of pixels en-
sures that not even a perfec-
tionist can spend very long with
the anti-aliasing.

There are some technical challenges
and brain puzzles on offer for those
who desire them, but it is hard to im-
agine that success in the Pico-8 scene
could ever require extreme attention
to detail. Pico programs are easy and
quick to write, and an author who is
familiar with the basics of the platform
can create a fairly polished game in a
single evening.

At the time of writing this, the Pico
is still an alpha version, and this is ap-

parent in some parts of the develop-
ment environment, at least. The code
editor will not automatically skip to
the line that contains an error and the
keyboard cannot be used for drawing
pixels. The software does not assist
the user sufficiently; instead, the user
needs to read separate documents and
discover that the Esc key opens the ed-
itor, for example. The map editor can
be initially frustrating, since it does not
in any way indicate that the zero sprite
is always empty in terms of the map.

Despite a few problems, we can rec-
ommend the Pico even to beginning
programmers – at least those who are

attracted to 8-bit block aesthetics
and not afraid to read instruc-
tions from text files. Lua has
no major drawbacks, and the

simplicity of Pico’s interface
encourages doing things
yourself instead of looking

for ready-made solutions.
For the more experienced,

Pico offers an easy and fun pas-
time, and the results are way above
simple doodling with watercolours.

Community and creativity
The development of the Pico-8 was
crowdfunded, which ensured a large
group of enthusiastic fans already at
the time of publication. At the time of
writing, the forum of the developer,
Lexaloffle Games, has over 250 car-
tridges with games and other software.
A substantial portion of these are plat-
formers and other traditional 2D ac-

Lemmtris by Movax13h combines two classics to create a fine puzzle
game.

Hybris by Benjamin Soulén is a Japanese-style shoot'em up that takes
place inside the human body.

9

Star Beast offers Wolfenstein-style perspective graphics.The Pico-8 demo Orbys by POD was succesful at Tokyo Demofest 2016.

tion games, but you can occasionally
encounter some more experimental
ones. There are even a few demoscene
productions for the Pico.

The forum is the central community
for developing and publishing on the
Pico, and for the time being, at least, it
has a very enthusiastic, warm and en-
couraging atmosphere. Beginners are
also welcomed in a friendly and help-
ful manner. The Pico development
team often participates in the discus-
sion, which also makes the forum the
best place to ask about the Pico’s tech-
nical details.

Pico-8 also has its own fanzine, the
Pico-8 Fanzine, which also receives
input from Lexaloffle’s main develop-
er ”zep”. The creator of the indie plat-
former adventure VVVVVV, Terry
Cavanagh, is one of the more famous
writers. The fanzine is written by fans
for fans, and three issues have been
published at the time of writing. The
zine contains instructions for making
games, interviews, reviews and differ-
ent technical articles for Pico-8 pro-
gramming – and fan art, of course.

By now, many of our readers will
surely be convinced that a software
toy with such a warm-hearted spir-
it and an open development culture
must be free and possibly even open
source. This is not the case, however.
The Pico-8 is a commercial product
that currently costs around $20 to
download. The binaries are available
for the three most important x86 oper-
ating systems: Windows, Mac OS and

Linux. Many have requested a physical
Pico-8 console, but for the moment, it
can only be implemented by using the
runtime environment that can run the
program binary.

Of course, the Pico is a simple plat-
form, which makes it easy to reverse
engineer, and the Lua interpreter it
uses is already open source. Howev-
er, the project is currently surrounded
by such an aura of sympathy that not
many hackers would have the audac-
ity to produce an open and free Pico
variant. Instead, we can hope that
Lexaloffle itself will release the source
code for the Pico when the paying
customers start losing interest. This
would make the Pico an interesting
niche option for game development,
and perhaps even education, after the
community wanes and active develop-
ment ceases.

The future of fantasy
platforms
Fantasy consoles like the Pico-8 are a
relatively new phenomenon. Although
the Chip-8 virtual machine in 1970s
hobbyist microcomputers can be con-
sidered its predecessor, and many edu-
cational software suites use simplified
machines, the Pico is made exception-
al by its ”creativity first” approach.
As such, its only predecessor is Lex-
aloffle’s earlier Voxatron fantasy con-
sole.

It is quite possible that even more
small, easily approachable fantasy
platforms will start to appear in the

wake of the Pico. And the motive does
not need to be related to competition
or contrast – curiosity towards other
options will suffice.

The Pico’s features encourage fun,
cute and nostalgic creations, but a dif-
ferent selection of features could create
an entirely different spirit and aesthet-
ic. For example, it would be fun to see
an ”evil twin” of the Pico that empha-
sises the gloomy and rough corners
of the universe of opportunities. Of
course, this is a well-known phenom-
enon from the world of historical com-
puting platforms, but a subculture that
creates experimental fantasy platforms
might offer interesting laboratory con-
ditions for studying it.

Regardless of the future, the Pico-8
remains an interesting development
environment that offers a more casual
alternative for the classic home com-
puters and consoles. It combines the
inspiring 8-bit limitations with a mod-
ern design philosophy that emphasises
ease of use and simplicity. Those who
are even the least bit interested in cod-
ing and fascinated by large square pix-
els will find years of entertainment in
the Pico. 

2016.1E10

Uskoisitko

maailman kohtalon

ilmanpaineanturin

käsiin?

Doomsday
machines
Would you
trust the fate of
the world to a
barometer?

It might be easy to forget this in
a rush of nostalgia, but the 1980s
were not only about moon boots,

MacGyver and New Order. The threat
of nuclear war between the United

States and the Soviet Union was very
real, in particular during the earlier

part of the decade. And everyone
knew what this would mean: the end
of all life as we know it. This thought

was not particularly comforting to
1980s children, and we would have

slept even worse had we known how
close to global nuclear war the world

actually came.
Story by Mikko Heinonen

Images by Manu Pärssinen,
Wikimedia Commons

Bizarre

11

P aradoxically, both
the U.S. and the
USSR were simul-
taneously afraid
of each other and
convinced that
their counterpar-

ty would never think that they were
going to be the first ones to press The
Button. NATO’s Able Archer 83 mil-
itary exercise was a culmination of
this absurdity. The allies were training
for a scenario where nuclear war had
started, which led Soviet espionage to
believe that they were using the exer-
cise as a cover-up to start a war. The
agents were only asked to report their
findings, not their conclusions – and
chaos ensued since each one of them
only saw a small part of the big picture.
The situation was only defused when
the exercise ended.

War on the big screen
The tension between the superpow-
ers naturally left its mark on popular
culture. There were dark doomsday
prophecies such as Testament, Threads
and The Day After, but nuclear war was
a mainstay in movies of all kinds. One
of the more famous ones is 1983’s War-
games, where a young hacker called
David (Matthew Broderick) acciden-
tally calls a computer that supervises
nuclear weapons while searching for

the latest games. Even though the film
does cut some corners in traditional
Hollywood fashion, it contains realis-
tic ways of discovering passwords, for
example, and many have cited it as an
influence for picking up computers as
a hobby.

One of the main characters is an
AI known as WOPR (War Operation
Plan Response), developed by the fic-
tional Professor Falken (John Wood).
It tries to simulate different types of
conflicts from tic-tac-toe to World
War III. WOPR is commissioned be-
cause the operators sitting in the silos
are unwilling to launch their nuclear
weapons despite receiving direct or-
ders. David accidentally sets the AI to
simulate nuclear war, but the military
command believes it has really started.
WOPR also tries to launch the missiles
autonomously until it reaches the re-
assuringly optimistic conclusion that
the only winning move is not to play. It
also becomes apparent that a machine’s
judgment can fail even worse than that
of a human’s.

Life imitating art
When viewed from the future, it seems
that Wargames has more similarities
with real life than the writers maybe
even realised. The film was loosely
based on an incident that took place
in the early 1980s, during which the

U.S. Air Force had already scrambled
its nuclear bombers due to misleading
information received from NORAD.
The cause was not a hacker looking for
computer games, but a computer stuck
in ”war simulation” mode. The on-du-
ty personnel interpreted its messages
as real. There had been at least two
similar cases: one was due to human
error, the other was caused by another
malfunctioning computer. Even then,
some branches of the military had not
followed orders since they were sure
that the alarm was false. By this time,
the information had already reached
everyone, which leads us to conclude
that the risk of a nuclear holocaust was
fairly low.

In September 1983, however, human
logic helped to avoid the possibly se-
vere consequences on the other side of
the Atlantic. Officer Stanislav Petrov
was sitting in a control room and mon-
itoring signals from the Soviet missile
warning system when he received a re-
port of a Minuteman missile targeted
towards the Soviet Union. Petrov re-
viewed the information and acknowl-
edged it as a false alarm.

However, it did not take long before
the system gave out another alarm;
this time, there were four incoming
missiles. Petrov reasoned that, in case
of actual war, the United States would
send hundreds of missiles instead of

2016.1E12

only one. He switched off the alarm.
This was a bold decision, but a correct
one – it was later found that the device
was malfunctioning. By disregarding
the signal, Petrov might not have pre-
vented the actual end of the world, but
he certainly did his part in avoiding a
conflict. He was shunned for his ac-
tions by the Soviets, but later rose to
Internet fame.

The most interesting – or horrifying,
depending on how you think about it –
fact is that persistent rumours suggest
a type of WOPR still exists. However, it
is located in the Kremlin, not NORAD.

From my cold, dead hands
Sistema Perimetr, known in the West
as Dead Hand, was part of the USSR’s
nuclear defence. Different sources
offer inconsistent information con-
cerning the actual characteristics, ex-
istence and operability of the system,
and in particular the amount of auto-
mation involved, but they all have the
same basic idea. When operators re-
ceive reasonably reliable information
regarding a nuclear attack, they can
transfer the decision-making author-
ity to Perimetr. The system monitors
changes in the ambient light level, ra-

diation level and air pressure, and, ac-
cording to some sources, also listens to
signals from radio transmitters. It uses
this information to determine whether
it has been attacked. If this is the case,
Perimetr will launch whatever is left of
the nuclear arsenal.

The difference between Perimetr
and the imaginary WOPR is that the
former is designed purely for retal-
iation. At the same time, it is in fact
designed to maintain peace, not to de-
stroy humanity. When the final deci-
sion on launching a nuclear attack can
be transferred to a system that is, theo-
retically, incapable of error, no human
needs to press the button. This avoids
the possibility of one or more human
errors resulting in nuclear holocaust.
Perimetr ensured that, if the Soviet
Union were subjected to a surprise nu-
clear attack, the attacker would also be
destroyed. In part, this would reduce
the types of misunderstandings that
occurred during Able Archer.

It is difficult to find reliable infor-
mation on what Perimetr is actually
like, which parts of it are operational
and whether the system has ever been
autonomous. A 2009 article by Wired
magazine suggests that the system is

continuously on stand-by and receives
regular updates, but former Soviet gen-
erals say that it was never started. The
reason behind the conflicting informa-
tion is obvious: the Kremlin does not
mind if the rest of the world believes
that Russia possesses a unique nuclear
retaliation system. In the West, Russia
is considered a force to be reckoned
with, even if it is no longer the ”Empire
of Evil” it once was. We may only know
the truth after a long time, if even then.

But let us go back to Stanislav Petrov
for a while. He acted as the interface
between the machine and the physical
environment and fulfilled his duties by
dismissing the erroneous report. Who
knows what would have happened if
the seat had been occupied by Perimetr
instead of Petrov. Perimetr’s designers
were undoubtedly aware of this, and
it is hard to believe that anyone would
have trusted an arsenal of the deadliest
weapons to technology that is known
to be unreliable. A more likely scenar-
io is that the actual production system
would have included its own Petrovs
sitting in underground silos.

From master to servant
Despite the recent downturn in the re-
lationship between Russia and the rest
of the world, global nuclear war is, for-
tunately, still a fairly distant possibility.
Nobody would seriously suggest using
”infallible” computers to control nucle-
ar missiles.

However, there are still more than
enough nuclear weapons in the world,
and computers are related to them
more closely than ever. Since nuclear
tests are no longer being performed,
there is even more demand for mod-
elling and calculation in weapon de-
velopment. Control systems have also
improved continuously.

When DEC introduced its 64-bit
Alpha processor in the early 1990s, it
had very modest software support. Evil
rumours suggested that this was not a
concern for Digital Equipment Corpo-
ration, since a cruise missile does not
need a graphical user interface. While
this was mostly unfounded specula-
tion, the fact is that one of the largest
Alpha based supercomputers was con-
structed at the turn of the millennium
at Los Alamos laboratory – the very
same one that developed the world’s
first nuclear weapons. 

13

S krolli magazine is preserving
nine minuscule programs
for future generations as QR
codes – two games and seven

demos. Although one code can store
up to three kilobytes, the programs
printed here are at most 256 bytes in
length. Since this is a somewhat un-
orthodox use of QR codes, getting the
software to run might prove somewhat

challenging. We encourage you to ex-
periment with them!

With the exception of one, all the
programs are designed for MS-DOS.
Read the QR code and store its raw text
data in a .COM file. Then, use either a
real PC or an emulator to run the file.
The visually complex programs re-
quire more power than a typical DOS
computer has – using the DOSBox

emulator’s turbo mode (Alt+F12) is
recommended.

One of the demos is a piece of Ja-
vaScript that may even run on some
hardware with no modifications. It is
nothing special and is mainly intend-
ed as a proof of concept. The amount
of framework code makes JavaScript
a less suitable platform for extremely
small programs than MS-DOS. 

256-byte programs
These days, QR codes can be found everywhere. They are commonly used to store web
addresses, but can just as well be used for any data – such as executable code.
Story by Ville-Matias Heikkilä

4is256 (Řrřola, 2007) – A Tetris clone. Con-
trol with Shift, Ctrl and Alt.

Boulder Dash in 256 bytes (James David
Chapman, 1995) – A rudimentary version of
a classic game. Find the exit and beware of
the falling rocks!

Searchlight (Wamma, 2007) – A raycast cata-
comb with columns that cast shadows.

Bump is Possible (Downtown, 1999)
– A rotating concrete torus.

Dírojed (Řrřola, 2007)
– Psychedelic feedback in 32 bytes.

JavaScript test demo (Skrolli, 2013)
– A simple canvas effect that our readers can
improve on!

Puls (Řrřola, 2009) – Animated machinery
built with raymarching.

Sqwerz3 (Trimaje, 1996)
 – Rotation among multi-coloured squares.

Tube (3SC, 2001) – A freely rotating camera
inside a spiral tunnel.

Art pages

2016.1E14

T he Soviet Union pio-
neered many great ad-
vances in the fields of
science and technology.
It was the first nation to

send a satellite into orbit, the first na-
tion to send a human into space, and
the first nation to set up a long-lasting
space station. The USSR put heavy em-
phasis on scientific and technological
research, which made it a commenda-
ble adversary to the Western world.

It entered the development of com-
puter technology at the turn of the

1950s. The first programmable elec-
tronic computer in Continental Europe
was the MESM (Малая Электронно-
Счетная Машина), built during
1948–1950 and commissioned in 1950.
The military industry was already us-
ing electronic calculator applications
and analogue computers, but the age
of the digital computer started with
MESM. It consisted of 6,000 electron
tubes and consumed 24 kW of electric-
ity. It could perform approximately 50
calculations per second and it was used
in top-secret nuclear weapons projects.

Setun
There were many innovations during
the early stages of Eastern Bloc com-
puting. One of the most eccentric ma-
chines was the Setun (Сетунь) that
was built for research use at Moscow
State University in 1958. Instead of the
regular binary system, it used what is
known as a balanced ternary system.
This system includes minus one in ad-
dition to zero and one.

The Setun was a technological suc-
cess. This was attributed in particular
to the ternary system. It proved to be

History

History of Soviet and Eastern Bloc computers
In order to make the most out of this voyage through the history of computing in this great nation that is no
more, we recommend that you play the Soviet national anthem in the background. Full volume is preferable.
Story by Jari Jaanto, Ville-Matias Heikkilä  Images by Sächsische Landesbibliothek, Andrei Kulikov, Wikimedia Com-
mons (Panther, Konstantin Lanzet, Pereslavskaja pedelja, NZeemin, Arseni Gordin, SysCat, Andrew Butko)

Setun.

-6 1010 -+0

-5 1011 -++

-4 1100 0--

-3 1101 0-0

-2 1110 0-+

-1 1111 00-

 0 0000 000

+1 0001 00+

+2 0010 0+-

+3 0011 0+0

+4 0100 0++

+5 0101 +--

+6 0110 +-0

Numbers from -6 to +6 in deci-
mal, binary and balanced ternary.

ES-1035, an ES EVM series computer, in use in East Germany.

15

reliable and stable at different tem-
peratures and supply voltages, and it
was simple to construct and operate.
Approximately 50 units were built by
1965. Although the Setun also gath-
ered interest in the Western world, the
decision-makers considered it too ec-
centric for the planned economy and
the project was suspended. The Setun
at Moscow State University was re-
placed with an equally powerful binary
computer, but the operating costs of
the new system multiplied.

In 1970, the Setun received a suc-
cessor called Setun-70. It was pro-
grammed using the DSSP language
that was reminiscent of Forth. The Se-
tun and Setun-70 were the world’s only
ternary computers.

Argon-16
In the 1960s, development was divid-
ed into civilian and military branch-
es, and space computing was a part of
the latter. Fighter jets, spaceships and
surveillance posts needed light, fail-
ure-tolerant control computers, and
these could be found in the Argon
range. The most famous of the series is
the Argon-16 (Аргон-16). It was used
in all the Soyuz and Progress space-
ships and for 37 years at the Saljut, Al-
maz and Mir space stations. The ma-
chine never failed, which makes it the
most reliable computer model used in

space. It is also the computer with the
longest service record in space.

The Argon-16 went into production
in 1974. All of its components, includ-
ing memory, had triple redundancies
that all worked at the same time. The
main design criteria for the computer
were reliability and real-time cooper-
ation with the other equipment of the
spaceship.

Since 2010, Soyuz spacecraft have
used a new control computer called
TsVM-101 (ЦВМ-101) in place of the
Argon.

Copying Western computers
In 1966, the financial planners sug-
gested developing a series of comput-
ers that would include models with
different hardware designs but com-
patible software. This created the uni-
fied system for electronic computers,
ES EVM (ЕС ЭВМ), which went into
production in 1972. Computers in this
series were manufactured in the Soviet
Union as well as in the other social-
ist countries, and they even outlasted
the collapse of the Soviet Union itself,
since the final models were produced
in 1998.

The unified system allowed compat-
ibility with Western computers for the
first time. Although there were compe-
tent Soviet hardware designs available,
the system was built on the American

IBM S/360. IBM did not mind this and
entered into cooperation negotiations
with the Soviet Union; however, they
ended in 1979 due to the United States’
economic sanctions.

Other computer series based on

This Soyuz flight would not have succeeded
without the Argon control computer.

Ural-1, high-end Soviet computing from the 1950s.

2016.1E16

Western technology were the SM EVM
(PDP-11 and VAX) and, in the 1980s,
the ES PEVM (IBM PC). In addition
to these central product lines, oth-
er devices, such as the Apple II, Oric
and ZX Spectrum, were also cloned.
Cloning the Intel 8080 processor made
it possible to build CP/M compatible
computers. The Cray-1 supercomputer
was also successfully cloned in the late
1980s.

Microcomputers
When Intel introduced the world’s first
microprocessor in 1971, the Soviet Un-
ion was not yet far behind: The K145IP1
processor was developed in 1973 and
the first pocket calculators using it were
introduced to the market in 1974. Al-
though the politburo emphasised the
production of pocket calculators, it was
not interested in personal computers
which started gaining popularity in the
West in the late 1970s. The country was
going through financial difficulty and
could not even meet the growing de-
mand for computers in its research and
production facilities. Starting in 1980,

the neighbouring country Bulgaria
produced Apple II compatible Pravetz
computers for educational use, but pro-
duction figures were initially low. Since
CoCom, led by the United States, had
imposed an export ban on high tech-
nology, the only options available to
regular Soviet citizens in the late 1980s
were DIY and smuggling.

In 1982, the hobbyist magazine Ra-
dio (Радио) published assembly in-
structions for a computer known as
Mikro-80 (Микро-80). The computer
used Soviet K580 series processors that
were copies of the Intel 8080. It had 64
kilobytes of memory and the only dis-
play mode was a text mode with 64×32
characters. The computer had over 200
parts, which is why only a few were
ever built by hobbyists. Sourcing parts
was difficult and could only realistical-
ly take place through the black market.
A simplified version of the Mikro-80,
the Radio 86RK (Радио 86РК), was re-
leased in 1986. The computer had been
reduced to 29 components. The pro-
cessor and text mode were the same
as before, but memory had been cut to

16–32 kilobytes. The machine gained
some popularity among hobbyist cir-
cles and inspired several variations. It
also saw several add-ons, such as an
accessory that could display graphics.

In the same year as when the
Mikro-80 was released, the Soviet
Ministry of Radio Industry also in-
troduced an Apple II clone known as
the Agat-4. Whereas the Bulgarian Ap-
ple clones used their own clone of the
6502 (the CM630), the Soviet models
replaced it with an interesting simu-
lation arrangement. The production
batch in 1984 was very small and only
the later versions, Agat-7 and Agat-9,
spread into mass production. Apple II
compatibility improved with the new
models. The Agat was popular in edu-
cation, but hobbyists never received it
in large quantities.

Western computers were not as dif-
ficult to purchase in all Eastern Bloc
countries as they were in the Soviet
Union. Black market Commodore 64s
were fairly popular in Poland, Yugosla-
via and East Germany but completely
unheard of in the Soviet Union. The
only capitalist home computer official-
ly sold to the Soviet Union appears to
be the MSX which Yamaha sold for use
in teaching.

Elektronika
In the West, the PDP-11 instruction set
was solely used for machines the size
of refrigerators; in the Soviet Union,
however, it was a very popular choice
and used in smaller devices and em-
bedded systems, right up to satellites
and graphing calculators. The small
PDP-11 compatibles used the same
Elektronika (Электроника) product
name as the pocket calculators. The
Elektronika models 60, 85 and DVK
were designed for terminal and work-
station use. The model 60 is known as
the computer that was used to write the
original Tetris. The workstation range
was also used as the basis for the first
official Soviet home computer, the Ele-
ktronika BK (БК). The BK was mainly
intended for use in schools, but it was
the first computer that Soviet citizens
could officially purchase for the home.

The first BK series computer, the
BK-0010, went into production in
1985. Its processor, the K1801VM1,
was 16-bit in accordance with the
PDP-11 architecture and operated at

Elektronika 60M.

BK-0011M.

17

a clock frequency of 3 MHz. It had
32 kilobytes of RAM. There were two
display modes: 512×256 with two col-
ours and 256×256 with four colours.
These modes were also used to simu-
late 64×25 and 32×25 pixel text modes.
The machine shipped with the FOCAL
programming language and a BASIC
interpreter was optional.

The BK-0010 received an improved
version, the BK-0010.01, which had a
typewriter keyboard in place of the old
numb keypad. It also had the BASIC
interpreter in ROM. The BK-0010Š
was released for schools, and it includ-
ed a monitor and networking function-
ality. The BK-0011M, released in 1989,
upped the clock frequency to 4 MHz
and the RAM to 128 kilobytes. Graph-
ics were also improved: previously, the
only colours on offer had been black,
red, green and blue, but now there was
a choice of 15 other four-colour pal-
ettes.

In the 1990s, users of the BK-0011M
fitted the machines with AY sound
chips and controllers for disk drives
and hard drives. BK demos started ap-
pearing with the rise of the Spectrum
demoscene.

Other computers
The UKNC (УКНЦ) computer intro-
duced in 1987 could be called the So-
viet Amiga in terms of its appearance
and inner workings. The UKNC had
two PDP-11 compatible K1801VM2
processors, one of which acted as the
graphics processing unit and auxilia-
ry processor. The main processor had
a clock frequency of 8 MHz, the ma-
chine had 192 kilobytes of RAM and
the graphics mode offered 8 colours at
a resolution of 640×288 pixels.

However, the ”Soviet Amiga” is by-
passed in terms of its multimedia fea-
tures by the Vektor-06C (Вектор-06Ц),
which was an 8-bit home computer
developed in the same year. While oth-
er Soviet computers only used beep
sounds, the Vektor had a dedicated
clone of the Intel 8253 counter chip
for sound. It offered three square wave
channels. The total colour palette was
an impressive 256 colours, of which 16
at a time could be used in the 256×256
pixel graphics mode. The bottleneck of
the system was its main CPU, a clone
of the 8080 that could not refresh the
display quickly enough at a clock fre-
quency of 3 MHz. The computer had

64 kilobytes of RAM, half of which was
video RAM. The device was fairly pop-
ular and a lot of games were made for it.

While on the topic of Soviet infor-
mation technology, we must not forget
pocket calculators. Some of them were
also sold in Finland through the Teboil
chain of service stations. There were
countless models of calculators, from
simple standard models to program-
mable graphing calculators, the finest
of which was the restrictively expen-
sive Elektronika MK-90. The MK-90
had a 160×64 pixel liquid crystal dis-
play, a BASIC interpreter and a PDP-
11 compatible processor. The clock
frequency had to be kept low, which
made the device operate slowly. The
calculator shipped with an empty stor-
age module and a ROM module that
contained Tetris, a clone of Pac-Man
and a chess game, among other things.

The socialist bloc also produced
electronics solely designed for gaming.
The Soviet system churned out hand-
held electronic games, most of which
were direct copies of Nintendo’s Game
& Watch games, and coin-operated
arcade games. Most arcade games had
gigantic pixels and very modest tech-

”Soviet Amiga” UKNC or MS-0511.

The control unit of an ES-1052.

Nu, Pogodi! handheld game.Pocket computer Elektronika MK-90.

2016.1E18

nology, but some were surprisingly ad-
vanced. The TIA-MC-1 hardware had
256 colours and sprites, among other
things.

Out of the larger computers, we
should mention the Elbrus series that
started in the 1970s. It includes mul-
tiprocessor supercomputers that were
used for space and nuclear research.
The developer of these machines, Bo-
ris Babaian, has been called the Sey-
mour Cray of the Soviet Union.

Cloned 8-bits
Although the Soviet Union and the
Eastern Bloc did produce many origi-
nal computers, the most popular home
micros were copies of the British ZX
Spectrum. Spectrum was the ideal ma-
chine for cloning. Its small size made
it simple to smuggle across borders,
and technological simplicity made it
simple to reverse engineer and manu-
facture. The first Soviet Spectrum was

built in 1985, and by the early 1990s,
nearly all of the larger Soviet cities had
Spectrum manufacturers. Some of the
Spectrum clones became much more
sophisticated than the machines they
were based on.

Although the Spectrum was by far
the most popular 8-bit computer in
the socialist countries, other 8-bits
were also being cloned. The Agat and
Pravetz, mentioned earlier, were Apple
II clones, except for Pravetz 8D, which
was an Oric clone. In Yugoslavia, a
ZX81 clone called Galaksija was intro-
duced already in 1983; it utilised Z80
processors imported from the West.
NES consoles have been cloned in Chi-
na since the late 1980s, and some of
them ended up on the Soviet and East-
ern European markets.

Hobbyist culture
It was typical of the Soviet computer
industry that software production was
omitted in the five-year plans. Hobby-
ists and professional users alike had to
write their software from scratch and
perform different hardware modifi-
cations. This created a strong maker
culture and a black economy that can
be compared to the uncommercial na-
ture of Western hacker cultures. While
software production was big business
in the capitalist countries and copying
mainly took place at universities and in
hobbyist circles, the opposite was true
in the socialist countries. Software pi-
racy was the generally accepted norm
and money only exchanged hands in
the hobbyist circles and on the black
market.

Games and software for the BK com-
puter, in particular, typically contain
a start screen that can be compared
to the crack intros by Western pirate
groups. This screen introduces the
author or distributor of the software,
advertises other games on sale and
provides a phone number for further
information. There was a large amount
of unofficial software production for

the BK. Hobbyists converted both
Western software and software from
other Soviet computers and produced
a number of games.

The first demos from the socialist
countries were made in Poland and
Czechoslovakia for the Spectrum,
from where the phenomenon migrated
to the Soviet Union through the soft-
ware piracy networks. During the ini-
tial stages, Eastern Bloc demo authors
had no knowledge of the existence of
the Western demoscene. They started
writing demos purely from their own
perspective. The Soviet hobbyists en-
countered the Western demoscene for
the first time through Amiga demos,
even though none of them had Ami-
gas. Demos spread as copies of copies
of VHS tapes, and Spectrum hobbyists
used them for inspiration. A few dem-
os contained the phrase ”Amiga rules!”
even though none of the authors had
ever seen a real Amiga.

The demoscenes of the East and
West only discovered each other years
after the collapse of the Soviet Union,
in the latter half of the 1990s, when the
”ex-USSR” demo culture stabilised and
the arranging of regular, larger demo
events started. At this time, the main
platform for Eastern Bloc demos be-
came the Spectrum clone Pentagon
128 that is still the de facto standard
for Russian Spectrum demos.

Summary
Soviet era home computers typically
had a Western clone processor, but the
rest of their technology was original.
Depending on the time and manner of
calculation, technology was 5–10 years
behind Western hardware. Building
computers yourself, which was typical
of early 1970s microcomputer culture,
was still common in the Soviet Union
in the latter half of the 1980s. Software
and peripherals were not sold and had
to be built by the hobbyists themselves.
The Soviet era had a strong DIY cul-
ture that still lives on! 

These Bulgarian Apple clones appear to work
fine in a school in Pereslavl in 1985, but is the
heating working?

KP580BM80 (= Intel i8080).

K1801BM1.

T34BM1 (= Zilog Z80).

KM1801BM3 (KM1801WM3).

•	 MESM: http://www.engadget.com/2011/12/26/mesm-soviet-computer-project-marks-
60-years/

•	 Setun: http://en.wikipedia.org/wiki/Setun
•	 Moscow State University: http://hpc.msu.ru/?q=node/57
•	 Setun-70: http://ternary.3neko.ru/setun70.html
•	 Agat: http://en.wikipedia.org/wiki/Agat_computer

http://www.engadget.com/2011/12/26/mesm-soviet-computer-project-marks-60-years/
http://www.engadget.com/2011/12/26/mesm-soviet-computer-project-marks-60-years/
http://en.wikipedia.org/wiki/Setun
http://hpc.msu.ru/?q=node/57
http://ternary.3neko.ru/setun70.html
http://wikipedia-agat

19

Column

We upgraded your
device, it’s ruined!
Any love for an outdated android?
Story by Mikko Heinonen

I keep an Android tablet on my
bedside table and use it to view
online content before going

to sleep. A Google Nexus 7 (2012)
worked fine for this purpose for about
two years.

All the software I needed worked
nicely, until Google updated the device
with Android 5.0. Upon first start-up,
it was clear that the new OS alone was
eating the resources of my humble tab-
let. Moving between applications was
sluggish and video playback, in par-
ticular, slowed down to a crawl.

When I brought this up with an An-
droid veteran, the response was clear:
it’s all your fault; you should have
never upgraded. Owners of old de-
vices should have stuck with the old
version, which also uses up less of the
resources. However, this is problematic
because Android also has its share of
security vulnerabilities, and I some-
times use the same tablet to book tick-
ets while travelling, for example. I want
to ensure that the security of the device
is as up to date as possible – and, going
forward, these fixes will only be availa-
ble for the latest version.

Well, at least somebody cares
At the same time, I realise that I am
fortunate. Google is interested in pro-
viding new software versions for its
reference devices even after they are
two years old. At home, we also have
a newer, cheap Chinese tablet that has
received exactly zero OS updates dur-
ing the last year. From now on, it will
need to rely on community-built cus-
tom ROMs.

Even larger manufacturers tend to
abandon their devices early, however.

A year ago, factory refurbished iPhone
4s were offered very cheaply and peo-
ple everywhere rushed to get them.
Not many of them considered the fact
that their newly purchased phone had
at least one serious vulnerability that
Apple has no intention of ever fixing.
The phone is five years old and thus
considered an end-of-life product that
receives no new OS versions.

A change is coming
The end of support for Windows XP
was also a hot topic a while ago. The
old workhorse was finally taken off
life support after 13 years, and it is
still dearly missed by many. There are
still millions of active XP installations,
many of which will, no doubt, cause all
sorts of joy to their owners and net-
work operators, among others.

Updating XP was expensive for Mi-
crosoft. Buying a cheap OEM licence
in 2001 entitled you to a decade of free
updates. The new versions were not
radically different, which made XP too
popular for it to be simply discontin-
ued. The support for Windows 7 was
also extended until 2020, since the
transfer from XP to 7 started late.

This is clearly a problem that Mi-
crosoft aims to avoid with Windows
10. Offering the upgrade for free is
designed to lure users towards the lat-
est version and to relieve the historical
burden. They are clearly borrowing
pages from their opponent’s playbook,
since Apple has already been distrib-
uting free OS X updates for a longer
time. The only difference is that you
can only run OS X on Apple hardware
(without resorting to dirty tricks, that
is). Microsoft needs to offset the differ-
ence with advertising income.

Sour Apples
A few months ago, a relative of mine
asked me to take a look at her old

MacBook. It was maybe 6–7 years old,
but still mechanically intact and suffi-
cient for her purposes. Unfortunately,
though, the integrated display adapter
was so old that a new version of OS X
would not run. This, in turn, prevent-
ed the installation of later software ver-
sions. The reality was that, in order to
run modern software, she either need-
ed to switch to an open source OS or
head to the store.

Another friend of mine managed to
upgrade the OS on her old Mac, but
the end result was a complete loss of
performance. After a few weeks, she
grew tired of waiting and bought a new
one. That is also what I did with my
sluggish tablet.

Walking time bombs
Offering the latest update for free is
a handy way for manufacturers to re-
duce their duties. There will be no
need to fix ancient OS versions when
everyone is offered the latest edition.
After this, they only need to decide
which hardware to make obsolete dur-
ing each round.

Owners of old devices can appreci-
ate the idea of a new operating system
– until they realise that they are actu-
ally faced with an unpleasant choice:
should they accept the vulnerabilities
and other issues or slow their device to
a crawl?

This decision is easy to make as long
as the consumers can afford to – and
can be bothered to – update their hard-
ware every two years or so. However,
this is not even nearly always the case,
and even the old devices are usually
sold or handed down to someone. The
world is full of yesterday’s hardware
that receives no software updates. Usu-
ally, an average user cannot understand
why they should replace a working PC
or phone that still serves its purpose.
Or why they should look into GNU/
Linux at the latest when the hardware
starts to show signs of ageing.

After all, it is true that Windows XP
can still be used to view news on the
Internet. A phone with an old version
of Android or iOS will still work when
making calls or posting on Facebook.
This becomes a problem, however,
when millions of these walking dead
are connected to the Internet. The cre-
ation of a zombie army is only one ma-
jor vulnerability away. 

Abandonware
– the controversial software graveyard
What is abandonware? Who abandons software and why? What makes one person’s trash
another person’s treasure?
Story by Mikko Heinonen, Kalle Viiri  Image by Tapio Lehtimäki

2016.1E20

Games

A bandonware refers to
commercial software
whose copyright is
not being actively en-
forced. In many cases,

the software has not been commer-
cially available for years. The publisher
may have gone out of business entirely
or switched the focus of its business, or
the software may have been published
for a device that is no longer common-
ly used. While the software is still tech-
nically subject to copyright, no-one is
enforcing it.

Since the amount of available soft-
ware is enormous and continuously
growing, this graveyard has a constant
supply of cadavers. Some of them will

later rise from their graves, but many
remain in limbo forever.

Players first
Games are the best-known and most
popular form of abandonware. This is
due to a number of reasons. The num-
ber of games being published is huge,
which results in a higher rate of aban-
donment. Games are usually made
with small budgets and the studios cre-
ating them are often short-lived. Fur-
thermore, productivity software usu-
ally develops in a manner that makes
older versions obsolete.

Games, however, behave differently.
Their changes are commonly related
to the technical implementation. Many

old games have features that players
keep coming back to even after sever-
al years. Players also commonly have
a strong sense of nostalgia towards
games from their childhood.

Like all other software, games have
been copied and distributed for as long
as they have existed. The concept of
abandonware, however, can be seen to
have been brought about by the emer-
gence of the World Wide Web, since
it allowed for offering entire, curated
collections of abandoned games and
their descriptions. Many games were
already fairly old by the time WWW
came around.

It is no wonder, then, that the In-
ternet is full of sites that offer classic

21

games and other software for down-
load. They all operate on more or less
the same principle: the software is
made available because the webmas-
ters believe that the copyright holders
have lost interest in it. Some sites play
it safe and remove the download links
when the software becomes available
again. Copyright holders are also en-
couraged to request the removal of any
downloads. While these disclaimers
do not really hold water in legal terms,
many of these sites have been allowed
to operate for years with no major legal
repercussions.

Grey areas
In a way, abandonware only exists until
someone makes a decision on the fate of
the software. If the copyright holder de-
cides that they have no more interest in
the software, it becomes either freeware
or, in the best case, completely open
source. In the latter case, it falls below
one of the many open source licences.

id Software, for example, has re-
leased the source code for many of its
games and game engines, while retain-
ing the rights to the rest of the game
data. Similar examples can be found
from the field of productivity software,
as well. Many other developers, such as
Mr. Chip (Magnetic Fields) who were
behind the successful Kikstart motor-
cycle game, have released the binaries
of their old products on the condition
that no profit is made from their sales.
Others, such as Cinemaware, the de-
veloper of interactive movies, have
been distributing emulated versions
of their own games in order to create
traffic for their website and, as a result,
generate interest towards their new
products.

But there are opposite examples, as
well. Some publishers have made it a
policy to keep a firm grip on their intel-
lectual property. Nintendo, in particu-
lar, is known as a watchful guardian
of its rights. This is, of course, related

to the fact that Nintendo continues to
offer its old titles for purchase to the
owners of its latest gaming devices. Its
lawyers have shut down several sites
distributing the adventures of Mario
and his pals for free. This has resulted
in the addition of a specific ”non-Nin-
tendo clause” on some abandonware
sites. Naturally, this has done little to
prevent the online distribution of these
games, since new sites are born as
soon as others are closed. Distribution
has also shifted from WWW towards
peer-to-peer networks that are more
difficult to trace.

Rise from your grave
and make money!
Not every game is forgotten forever.
Different people have gone to great
lengths to locate the publishers of clas-
sic games and ask for permission to
publish them – or even to acquire the
publication rights. Street Rod, a clas-
sic car tuning simulator, is now legally

Bio Menace (Apogee 1993, DOS).

2016.1E22

available for free download thanks to
the efforts of a private individual. The
rights to the games of the ancient In-
tellivision game console are held by
Intellivision Lives!, a company set up
by hobbyists. They have even released
a compilation disc that works on Win-
dows. And there are countless similar
examples.

GOG.com, previously known as
Good Old Games, was established in
2008, and it is probably the best-or-
ganised reseller of old games. Its orig-
inal business idea was to locate the
copyright holders of old games, sign
distribution agreements with them,
and republish games on their own dig-
ital distribution channel after adapting
them to the latest hardware. The de-
velopment of the open source DOS-

box emulator was highly beneficial to
GOG in this respect. Later, they also
expanded to newer games.

GOG.com offers over one hundred
games that were released before 1995.
This is a good selection of early DOS
classics, and making the games avail-
able for only a few dollars has made
them a feasible alternative to illegal
downloads. Furthermore, since GOG
publishes the games without any form
of copy protection, it is completely
possible to extract the original game
files from the package and play the
GOG version on a real DOS computer.

Commercial nostalgia trips are also
available for other popular platforms,
such as the Commodore 64 and Ami-
ga. A company called Cloanto offers
the commercial products Amiga For-

ever and C64 Forever, which include a
licence for the ROM files of the origi-
nal computer and a selection of games.
Nevertheless, a nearly complete, care-
fully curated library of games for both
systems has been readily available on-
line for a number of years, and nobody
seems to mind.

However, the field of abandonware
also has its share of shadier entrepre-
neurs. Chinese online shops common-
ly offer devices that can emulate a va-
riety of 8-bit and 16-bit game consoles.
Very often, they also ”accidentally”
contain commercial ROM files from
these systems; at worst, this is even list-
ed as a feature on the packaging. The
original copyright holders were not
consulted, of course.

Preserving culture
Sites distributing abandonware have
reunited countless players with their
childhood favourites, but they also
serve a nobler purpose. The preser-
vation of digital software is far from
systematic, and even the original au-
thors no longer have copies of some
software. And since many publishers
who are active today have admitted
that their archives have been lost a long
time ago, what can we expect from
those who went out of business? Very
often, research into the early stages of
gaming history has utilised disk images
and box scans found online. What was
originally a form of piracy has become
the preservation of cultural history.

Writing emulators, which are es-

http://GOG.com
http://GOG.com

God of Thunder (Software Creations 1993, DOS).

One Must Fall 2097 (Epic MegaGames 1994, DOS).

23

sential for the preservation of history,
would also be substantially more dif-
ficult without an enormous, readily
available library of software. Game
programmers, in particular, were no-
torious for utilising every available
quirk in the hardware, and emulators
that only rely on the official documen-
tation will not operate correctly under
all conditions. A large amount of dif-
ferent software is required in order to
ensure the functionality.

The graveyard needs
a rulebook
Abandonware is an unclear concept.
At the moment, anyone can distribute
any software they like and claim that it
has been abandoned. In practice, the
person downloading it is responsible
for determining whether the site is au-
thorised to distribute the files. There
have even been cases of fraudulent li-
cence terms. A version of DOS is in
circulation that calls itself MS-DOS
7.1. It has been extracted from Win-
dows 98 and the text of the GNU GPL
has been appended to it. Microsoft
has not released the source code for
DOS 7.1 and does not appear to have
any intention of doing so in the near
future.

In 2013, an initiative was launched
on the Finnish Citizen’s Initiatives ser-
vice for limiting the duration of cop-
yright for digital software unless the
publisher requests an extension for
it. The rationale for the initiative was
similar to that used in abandonware:
software that is over twenty years old
is commercially feasible only in very
rare cases. The initiative did not even
come close to gathering the necessary
number of signatures, and EU legisla-
tion as well as international copyright

agreements would have made it nearly
impossible to enact in any case.

The matter is too important to ig-
nore, however. At the moment, years of
software preservation can be lost in an
instant if a copyright holder decides to
shut the operation down after remain-
ing passive for a long period of time.
In practice, the preservation of digital
culture currently relies on benevolent
software pirates, publishers releasing
their work to the public and vague
concepts such as abandonware. 

2016.1E24

History

Machines talking
on the phone
The construction of electronic data
networks started in the 19th century,
and one of them eventually reached
nearly every home. This was, of course,
the telephone network. Finns were en-
thusiastic about building networks
from the start: By the 1890s, Helsinki
had several telephones per one hun-
dred residents, which was one of the
highest ratios in the entire world.

The telephone network was also an
attractive option for relaying other in-
formation in addition to speech. News
agencies had to send a lot of informa-
tion to each other quickly, and this
was done by using teletypes, which
were a type of remotely operated elec-
tronic typewriter. Teletypes had their
own Telex network, but the telephone
network reached further and was, in
most cases, cheaper to use. You only
needed a modulator/demodulator, or
”modem” for short, between the tel-
etype and the phone line in order to
convert the character data to different

tones and back again. The first phone
line modems were taken into use in the
1940s, which means that the technol-
ogy for connecting computers to the
telephone network pre-dated the com-
puters themselves.

The first widespread computer net-
work was SAGE (Semi-Automatic
Ground Environment), commissioned
by the United States military in 1958.
It mainly relied on regular phone
lines and modems for communica-
tion. Banks were early adopters of this
technology on the civilian front; their
central computers called each other in
order to exchange transaction infor-
mation.

Goodbye to punch cards
During their first decades, computers
were large and expensive, and very few
people were able to use them person-
ally. Users planned their software on
paper, punched them on punch cards,
delivered the piles of cards to the ma-
chine room where they were run in
batches, and later received the output.

The means of operation changed dra-
matically with the introduction of ter-
minals. Timesharing meant that sever-
al users controlled the same mainframe
simultaneously from different termi-
nals and received nearly instantaneous
responses. The terminals were often
connected with modems, which al-
lowed the user to reside in a different
city than the computer itself.

Technology hobbyists were also in-
terested in computers, terminals and
modems, and many of them built them
by themselves. This allowed students
who were technically inclined to use
the mainframe from home. Before
long, they also started thinking of
turning their home computer into a
”mainframe” that others could connect
to.

Ward Christensen and Randy Suess
from Chicago were the first ones to
set up a public BBS for hobbyists. The
year was 1978. The system was sim-
ply known as CBBS (Computerized
Bulletin Board System) and it ran on
an Altair compatible. The first similar

Internets before the Internet
– the rise and fall of modem BBSes
Finland has been connected to the Internet for over 25 years. However, computers were already talking
to each other long before this, and it took years for the Internet to supersede the other networks.
Story by Ville-Matias Heikkilä  Images by Manu Pärssinen, Ville-Matias Heikkilä, Wikimedia Commons

25

system in Finland was set up in 1982
by Seppo Uusitupa and it was known
as CBBS Helsinki.

How BBSes operated
In the 1980s, BBSes were also referred
to as electronic mailboxes. During
their golden age, it was difficult to ex-
plain their operation – and inherent
charm – to someone who had never
used one, but today, we can compare
them to a website.

Imagine a site with a discussion fo-
rum. The forum has dozens of users
who discuss every imaginable topic. In
addition to the forum, the site has an
area where you can download software
and other files or upload your own
files. There is also a dedicated section
where you can play games against oth-
er users. You log in with a username
and password, and in order to receive
them, you need to answer a few ques-
tions – mostly regarding your personal

information.
Most Internet users can easily im-

agine a site like this. Now, imagine that
the site is only accessible to one person
at a time. When you try to access it, it is
most likely busy. It may become avail-
able in fifteen minutes or half an hour.
While waiting, you can try to access
another site. Once you finally connect
to a site, your connection time may
be limited to 30 minutes, for example.
Furthermore, the connection will cost
at least the price of a local phone call.

Therefore, you need to use your
time efficiently. Instead of browsing
through forum messages or file lists
online, you should download them to
your own computer. Replies to mes-
sages should be written with a specific
offline reader and uploaded as a pack-
age the following night.

Of course, BBSes were not websites;
users connected directly via charac-
ter-based terminals. The black termi-

nal screen slowly printed lists of com-
mands that, when typed, allowed the
user to move from one area to another
and use different functions. The BBS
server was most commonly located in
the home of its administrator, the Sys-
tem Operator (SysOp). SysOps often
followed what their users were doing
and would sometimes open private
chats with them. BBSes were often dec-
orated with personal, colourful charac-
ter graphics and, at its best, calling one
felt like you were visiting the owner’s
home.

Of course, there were also larger
BBSes. Some were located inside real
data centres and had several phone
lines – and some even charged callers a
separate fee. Finland’s largest BBS was
MBnet, which operated between 1994
and 2002 and could accommodate
over 500 simultaneous users. However,
a typical BBS ran on a hobbyist’s per-
sonal computer. Some were open 24
hours per day, while others were only
started at night.

In Finland, calling BBSes was not
very common among computer hob-
byists in the 1980s. Even software pi-
rates used mail for trading their flop-
pies until the turn of the decade. One
of the reasons was that antiquated ap-
proval legislation made modems fairly
expensive to purchase and use.

BBS-style communication was also
marketed for the masses: Videotex,
which was born as cousin of Teletext
in the late 1970s, was expected to bring
data networks into every home by
means of easy to use terminals. Finnish
Videotex services included Telesampo
and Infotel which were used for online
banking in particular. However, the
system was only successful in France,
where the Minitel service had millions
of users at one point.

Teletype.

Menus from a bulletin board system running BBBS.

For many Finnish BBS users, Freenet Finland was their first contact with the Internet.

2016.1E26

Mainframes and universities
While hobbyists were setting up their
first modem BBSes, mainframe opera-
tors were already busy building packet
networks that used fixed connections.
Since 1969, the United States had been
constructing ARPANET which includ-
ed military and university computers.
In Europe, the French CYCLADES was
a similar network, and even Finland
started planning a university network
already in 1974.

Fixed lines were copper lines and
physically similar to telephone lines,
but they were entirely reserved for
connecting two points. A custom-
er leased the entire line and received
access to its entire capacity. Initially,
ARPANET operated at 50 kilobits per
second – twenty times faster than a
standard telephone modem.

The idea behind a packet network
is that the machines connected to it
send out data packets that include
the address of the receiving comput-

er. The machines also continuously
listen to the line and collect packages
addressed to them. The intersections
of the lines have routers that forward
the packets according to their address.
Initially, ARPANET used a packet pro-
tocol known as NCP, but it switched
to Internet Protocol (IP) in 1983. At
the same time, the military computers
were separated into a dedicated net-
work and the remaining part became
known as the Internet.

In Finland, Internet-type commu-
nications started with networks that
were entirely modem based. In the
early 1980s, universities had UNIX
machines that supported email mes-
sages between users (mail) and public
newsgroups (news). UNIX had a pro-
gram known as UNIX to UNIX Copy
(UUCP) that allowed UNIX machines
to transfer conversations to each other
over modem connections. Mail bags
were usually exchanged only once or
twice per day, which meant that mes-

sages took days to travel across larger
UUCP networks. The Finnish network
was connected to the internation-
al UUCP network in 1983. Fidonet,
which later achieved popularity in the
BBS world, was also based on exchang-
ing message packets.

Packet networks arrived in Fin-
land in 1983 when the governmental
telecommunications service started
offering an X.25 network known as
Datapak. The invoicing was based on
the amount of transferred data. Banks
were the first users of the network, but
the Finnish University and Research
Network (FUNET) that was started
the same year also decided to start us-
ing it. In a few years, however, FUNET
switched to 64-kilobit leased lines after
the increase in email traffic resulted in
substantial data transfer bills.

Universities had a wide range of
hardware from different manufactur-
ers, each with their own network tech-
nology, and FUNET was transferring
packages from all of them. DECnet was
only intended for VAX machines and
other computers from Digital. EARN
was a network of European universities
that was established and sponsored by
IBM. It offered mailing lists and instant
RELAY messaging. UNIX computers
only understood IP, but VMS machines
could speak any protocol. The only
fixed international connection ran via
EARN, which meant that, even in 1987,
international UNIX emails and news
posts had to be transferred by modem.
This situation improved the following
year, when the university networks of
the Nordic countries were connected to
64-kilobit lines, forming NORDUnet.

NORDUnet connected with the
Internet in 1988, when a 56-kilobit
satellite link was established between
Stockholm and Princeton. However,
the United States remained cautious
about Finland, since it was right next
door to the Soviet Union. The very
same year, the Nordic countries lost
the Internet for a week after an enter-
prising Finnish student had tested the
security on some US Army servers.

Little by little, the Internet replaced
all other protocols in the university
networks. Nowadays, few people will
recognise EARN, for example, even
though it was the most popular data
network in European universities for
several years.

ANSI graphics from Haciend el Bananas.

One of the most popular BBS games: Legend of the Red Dragon (LORD).

27

Worlds collide
In the early 1990s, BBSes were still very
far detached from the packet networks.
As a result, most BBS users had a fairly
vague idea of the Internet. Some BB-
Ses were connected to the Internet via
the UUCP network, for example, and
there were a couple of systems with
fixed Internet connections. These were
located at universities.

1993 was the year when many hob-
byists connected to the Internet for the
first time. Around this time, several
ISPs offering reasonable prices were
established in Finland. In fact, some
of them were BBSes that purchased a
fixed connection to the Internet and
paid it back by collecting a monthly fee
from their users. User interfaces were
still character-based, usage times were
limited and the lines were often busy.

Most services offered by the Internet
had an equivalent in the BBS world.
Email was similar to private messages,
newsgroups were like public messages
and IRC was reminiscent of the cha-
troom in a multi-node BBS. However,
everything happened on an entirely
different scale. There were thousands
of busy newsgroups, some of which
were dedicated to very niche topics.
The chats and MUDs attracted unbe-
lievable numbers of users from dozens
of different countries, which made
geographical boundaries irrelevant.
Many users felt as if they had stepped
from a small village into the centre of a
metropolis.

Modems became commonplace in
the 1990s, which could be seen as an
increase in the use of BBS and the In-
ternet. Many hobbyists used both, but
for different purposes. BBSes were
seen as clear, closely-knit communities
were like-minded people could discuss
anything and everything. In Finland,
the system of local phone calls and
regional phone companies created a
separate BBS scene in every province.
The users also arranged get-togethers
with one another. The Internet was a
less personal, more chaotic and lim-
itless ”ocean of information” that was
used to search for files, discussions and
expertise on specialist topics.

During the latter half of the decade,
the Internet started to erode the BBS
world. In early 1996, there were over
500 public 24H BBSes in Finland; by
the year 2000, this number was down

to a few dozen. The availability of fixed
broadband connections made many
users give up their phone subscrip-
tions and, with that, also the BBSes.
The most loyal BBS users only left at
the last minute, and for many of them
the transition was far from easy.

Many BBS communities disbanded
completely when they were unable to
find a suitable gathering place on the
Internet. The most resilient SysOps
moved their BBSes online, either di-
rectly or by converting them to online
forums, but very few of them were suc-
cessful. The communities that chose an
IRC channel to replace their BBS fared
the best. Of course, IRC is a very differ-
ent animal by nature, but it was able to
capture the close feeling of community
that was typical of BBSes better than fo-
rums or newsgroups, for example.

Out with the old, in
with the new
The Internet has developed from a
secretive elitist society into a basic hu-
man right. The researchers, students
and hackers were gradually joined by
representatives from all walks of life.
For many, Facebook was the final step
in the journey towards Internet com-
munity addiction.

The Internet has changed over the
years; sometimes, this has even been
for the better. Even the less technically
inclined can now be heard and finding
interesting content from among all the
white noise is now easier. However,
change always comes at a cost: when a
once popular online service fades away
and the users disappear, the same sense
of community is never felt again. The

new service will always lack a key fea-
ture and many users will never adapt
to it. Communities dissolve, leaving
many with an empty feeling.

Facebook will be replaced by some-
thing new within the next ten years.
By then, even the general public will
understand the historical nature of
the Internet – how even data networks
undergo paradigm shifts and how new
services are always built on top of old
ones. Maybe BBSes will also be given
the merit they deserve? 

PTT BBS, a giant BBS in Taiwan.

BBS status in 2013
At time of writing, the website
telnetbbsguide.com lists 350 operating
BBSes. Most are only accessible via
Telnet, but some American BBSes also
have a phone line. There are three
Finnish BBSes on the list: BCG-Box
(bbbs.net), a support BBS for the BBBS
software; Rampton Bird’s Box
(rbb.bbs.fi:32) and Haciend El Bananas
(haciend.bbs.fi) which specialises in
computer art.

Most modern BBSes are barren – like
museum exhibits that have been left in
place even though there are no more
users. However, there are still some
very large and active systems. PTT
from Taiwan may have up to 150,000
simultaneous users.

The Western BBS scene has close
ties with MUDs (Multi-User Dungeons)
and the boundary between a BBS and
a MUD is not always clear. MUDs are
still going strong despite the WoWs and
LoLs; according to mudstats.com, the
largest MUDs have over 800 simultane-
ous players. The Finnish BatMUD has up
to 200 players.

http://telnetbbsguide.com
http://bbbs.net
telnet://rbb.bbs.fi:32
telnet://haciend.bbs.fi
http://mudstats.com

2016.1E28

Technology

U NIX workstations
are desktop size ma-
chines that have been
designed to run a var-
iant of UNIX. Howev-

er, their background is different. While
PCs are home computers that gradu-
ally took on professional tasks, UNIX
workstations are scaled-down versions
of mainframes.

Workstations were used for de-
manding professional applications that
microcomputers were unsuitable for.
These included industrial design, 3D
graphics and scientific research, for
example. Workstations were also often
used as servers, and most manufactur-
ers offered servers that were compati-
ble with the workstation models. Lat-
er on, manufacturers started focusing
solely on servers.

Cross-breeding
micros and minis
In the 1970s, most computer use con-
sisted of timesharing. However, the
idea of a personal computer reared
its head on two fronts: some people
wanted to use cheap microchips to
construct something that would bare-
ly pass for a computer, while others
dreamt of machines that would dedi-

cate all the resources of a ”full” com-
puter to serving a single user. An early
example of the latter is the Xerox Alto
(1973), which is known as a pioneer
of the graphical user interface and the
Ethernet network.

UNIX was originally designed as
a timesharing operating system that
was used on Digital’s PDP-11 and VAX
minicomputers via text terminals. In
the early 1980s, however, companies
developing single-user UNIX comput-
ers started entering the market: these
included Apollo Computer, Sun Mi-
crosystems and Silicon Graphics. Later
on, even veterans like Digital and IBM
hopped on the bandwagon. UNIX had
originally been developed as an open
system, but it started to become com-
mercialised and was divided into man-
ufacturer-specific variants.

Workstations in the 1980s were com-
monly based on the Motorola 68000
series of processors. Its instruction
set is reminiscent of the Digital min-
icomputers mentioned above. In the
1990s, the most common choices were
32-bit and 64-bit RISC processors that
were usually developed and manufac-
tured by the equipment manufacturers
themselves. This proprietary approach
also created compatibility problems

between different UNIX variants.
By the turn of the millennium,

standard PCs had caught up with the
UNIX workstations in many respects.
This caused financial difficulties for
several manufacturers, and they refo-
cused their attention on supercomput-
ers and server hardware. Workstations
went out of production or they were
replaced by PC-based hardware. De-
commissioned workstations started
ending up in the hands of hobbyists.

So, what can you do with it?
UNIX workstations have not been vi-
able alternatives to PC hardware for
a long time. Nevertheless, they have
a certain charm and air of old-age
professionalism. They differ from,
say, PCs running Linux in charming
and bizarre ways, but are still similar
enough to offer a comparable user ex-
perience. They are also small enough
to fit inside a normal home.

In particular, old UNIX machines
have been turned into servers on home
networks. The subtleties and quirks of
the hardware and operating systems
make projects more interesting than
standard Linux hacking. However,
they can be used for other purposes
as well. A good rule of thumb is that

Beautiful, forgotten UNIX hardware
Many people can appreciate old home computer hardware. Older professional computers, such
as UNIX workstations and servers, are not as widely known.
Story by Ville-Matias Heikkilä  Images by Mikko Torvinen, Wikimedia Commons users Shieldforyoureyes,
Zymos, Brian Pitts, Napoli Roma, Thomas Kaiser, Fluff, Modano, Thomas Schanz, allaboutapple.com

http://allaboutapple.com

29

if you can run a program on the Rasp-
berry Pi Linux, you can also run it on a
1990s workstation.

Many of the traditional UNIX op-
erating systems still receive version
updates, since they are still used for
critical servers. Finding genuine soft-
ware for your machine may sometimes
require a bit of luck; in its absence, you
can usually test the machine with a free
UNIX variant like Linux or NetBSD.

Proprietary problems
Hauling an old UNIX machine home
will usually result in a host of prob-
lems. Displays commonly use a 13w3
connector or coaxial RGB – neither of
which can be found on a standard PC
monitor. You can either solder togeth-
er an adapter or use a serial port ter-
minal. Keyboards and mice are usually
completely exotic. Hard drives, optical
drives and even floppy drives are usu-
ally connected via SCSI in all models,

with the possible exception of the PC-
type cheap variants.

If the machine has had its hard drive
wiped or removed, the first task for the
hobbyist will be to find an operating
system and install it. The installation
may be tricky; for example, the instal-
lation CD might not boot unless the
block size for the CD drive is correct.
You can usually start the installation
over the network via TFTP, but this
commonly requires another computer
with the same OS on the network.

If there are any GNU software pack-
ages available, you should install them.
The operation of commercial UNIX
tools usually differs from that of the
GNU tools, which may cause compat-
ibility issues. The manufacturer’s own
C compiler is usually better at low-lev-
el optimisation for the target proces-
sor, but GCC is more compatible and
superior at high-level optimisation.

You may also encounter the word

open in commercial UNIX environ-
ments. However, this usually means
that the software is independent of
the manufacturer, and does not refer
to open source. For example, the CDE
desktop environment and the Motif
library are ’open’ additions to the X
window manager that never became
popular on the Linux side due to their
commercial nature.

Overall, old UNIX machines are in-
teresting devices. If you come across
an old UNIX workstation, server or
terminal while browsing random junk,
you should definitely pick it up – they
are much more interesting than old
consumer PCs, anyway. 

The Geometry Engine GE10 GPU from an SGI
Onyx.

Connectors on an SGI Onyx.

Sun's 64-bit UltraSPARC 1 processor.

Terminals
UNIX machines have always been used as servers
for multiple users, and you are sure to run across
terminals when hunting for UNIX hardware.
Terminals can be roughly divided into two groups:
There are text-based ”dumb terminals” with RS232
interfaces and graphical X terminals that connect
over Ethernet. Terminals usually consist of a CRT
monitor, the terminal logic inside the monitor case
and a set of input devices. Usually, they are easy
to connect to UNIX hardware as well as modern
Linux PCs.

Perhaps the most famous manufacturer of text
terminals is Digital, the developer of the de facto standard VT100. Even though all
the commonly used terminal emulators are VT100 compatible, the control codes may
differ greatly between different manufacturers. However, a virtual terminal software like
screen can correct the compatibility issues.

The X window system is built on a client-server model, which allows basically any X
application to run on an X terminal, right up to the modern web browsers. Neverthe-
less, problems may arise due to the limited colour palettes of the old terminals and the
tendency of new software to use the OpenGL API.

A hobbyist's collection of UNIX workstations.

2016.1E30

Sun Microsystems
Sun Microsystems was established in
1982 and the MC68000 based Sun-
1 was introduced the same year. The
company switched to its own SPARC
processor family with the Sun-4 that
was introduced in 1987.

In 1990, Finnish journalist Jyrki J.
J. Kasvi described the 32-bit SPARC-
station 1 as his ”dream computer” –
completely unaffordable due to the FIM
100,000 (approx. $20,000) price tag.
When Skrolli’s Editor-in-Chief purchased
the same machine ten years later, it
only cost FIM 150.

Sun uses a UNIX variant known as
SunOS or Solaris. Solaris and Sun
hardware are held in high regard on the
server side, as they can utilise a large
number of processors effectively. Solaris
is also available for x86 architecture
and it is free for non-commercial use.

Sun has intentionally crippled its low-
er-end workstations in order to make
the more expensive ones appear more
powerful. For example, its cheap display
adapters use chips that are common
on PCs, but their hardware acceleration
is not supported at all. The IDE disk
controller drivers also run purely on the
CPU.

Sun Ray thin clients were a fairly
common sight on desktops in the
2000s. They could transfer sessions from
one terminal to another by means of
an ID card. A Sun Ray can be used for
remotely accessing X window managers
as well as Microsoft Windows.

The database company Oracle pur-
chased Sun in 2009. The development
of SPARC processors and supercomput-
ers using them still continues.

Silicon Graphics
Silicon Graphics, like
Sun, was established
in 1982. The IRIS 1000
graphics terminal was
its first product, but
the IRIS 2000 and
3000 were full-blown
UNIX workstations.
In 1986, the com-
pany moved from
the MC68000 to the
MIPS architecture and purchased MIPS
in its entirety in 1992.

Since the beginning, SGI has made a
name for itself in 3D graphics, and they
became especially famous in Holly-
wood in the 1990s. The infamous UNIX
hacking scene of the film Jurassic Park
shows a 64-bit Crimson workstation
running the three-dimensional fsn file
manager.

SGI is one of the pioneers in 3D
acceleration. The display adapter on
an Indigo workstation can be larger
than the actual motherboard. SGI also
developed the graphics hardware for
the PlayStation 1 and Nintendo 64
game consoles, and both of them use
MIPS processors like SGI’s workstations.
The OpenGL graphics API that is still
considered an industry standard was
originally created in 1992 on the basis
of the IRIS GL graphics library.

The ”low-cost” O2, introduced in
1996, is one of SGI’s most popular
workstations. Its higher-end models
included a built-in camera. The unified
memory architecture allows all of the
memory, up to one gigabyte, to be used
by the Graphics Processing Unit. O2s
were even given out as prizes at the
Assembly demo party in the 1990s.

On the server side, the IRIX oper-
ating system and, by extension, SGI
hardware, has a bad reputation since it
is considered vulnerable and unstable
when compared to the competitor Sun.

Silicon Graphics International,
technically a different company than
the original SGI which went bankrupt in
2009, focuses on x86 based supercom-
puters and servers. MIPS and IRIX are
long forgotten.

Digital Equipment
Corporation
Digital Equipment Corporation manu-
factured computer components already
in the 1950s. UNIX was originally
developed on DEC’s PDP-8 and PDP-
11 minicomputers, from where it was
converted to 32-bit VAX machines in
the late 1970s.

The VAX based VAXstationia, which
entered the market in 1984, can be con-
sidered DEC’s first UNIX workstation.
Although the default operating system
for the VAX was VMS, which is com-
pletely unrelated to UNIX, DEC’s own
UNIX variant Ultrix was also offered
for this machine from the beginning.
In addition to VAX, Ultrix also runs on
PDP-11 and MIPS based DECstation
workstations.

In 1992, DEC introduced its own
64-bit RISC architecture, the Alpha.
The Alpha is famous for its computing
power, and even Cray selected it for its
supercomputers in the 1990s. Alpha
was even billed to replace the x86
architecture used in PCs at some point,
which is why Alpha-based PC moth-
erboards have found their way in the
hands of hobbyists.

The UNIX variant used with the Alpha
was originally known as OSF/1, but it
was later renamed as Digital UNIX
and further as Tru64. In addition to
these, Alpha can run OpenVMS and
even Windows NT to some extent.

In 1998, DEC was bought by PC man-
ufacturer Compaq, which in turn was
bought by Hewlett-Packard in 2002.
The final Alpha was the 21364, released
in 2004, as HP decided to concentrate
on PA-RISC and IA-64 architecture for
its supercomputing needs.

31

International
Business Machines
The information technology pioneer
IBM, famous for its large mainframes
and PCs, entered the UNIX workstation
market in 1986. The IBM 6150 or RT
PC was based on the PS/2 frame used
on PCs, but the processor had been
replaced with IBM’s own ROMP. ROMP
can be considered to be the first RISC
microprocessor, since IBM developed it
already in 1981. However, IBM sat on
the design for years, allowing others to
commercialise their RISCs.

In 1990, ROMP was replaced by
POWER, and the workstations, servers
and supercomputers using it were
commonly named RS/6000. The little
brother for the POWER was the Pow-
erPC, developed in cooperation with
Apple and Motorola and also used on
consumer hardware.

IBM changed the branding of its
system families at the turn of the
millennium and the RS/6000 became
the System p. Later on, System p was
combined with System i, previously
known as AS/400, which created the
Power Systems range of servers and
supercomputers. In addition to IBM’s
own UNIX variant, AIX, these machines
also support Linux and IBM i, which
originates from AS/400.

IBM is still actively developing main-
frame microprocessors. Alongside the
POWER processors, IBM also develops
the zEC range which, despite its high
computing power, is still machine code
compatible with IBM’s 1960s flagship,
the S/360.

Hewlett-
Packard
Hewlett-Pack-
ard has been
manufacturing
computers
and cal-
culators
of different sizes
and their peripherals since the 1960s.
HP entered the UNIX world with the
HP 9000 range, introduced in 1984. In
1989, HP purchased Apollo Computer
which offered a range of workstations.

In addition to MC68000s, the early
HP 9000s also used stack-based FO-
CUS processors. They were phased
out in the late 1980s in favour of HP’s
own PA-RISC architecture. In 2003,
PA-RISC was replaced by Intel’s IA-64
or Itanium, and the model name that
referred to the fictional HAL 9000 was
also discontinued.

HP’s UNIX variant HP-UX is still
considered a swear word by many.
Despite being efficient and reliable in
itself, it differs from the other manufac-
turers’ variants in several respects. HP’s
text terminals are not VT compatible,
the default C compiler is mostly only
suited for compiling HP’s own code, the
character sets and command arguments
are different, and so forth and so on.

The most popular PA-RISC work-
stations were the 32-bit 712 and 715
that were launched in the mid-1990s
to compete with PCs. They can accept
PC keyboards, mice and displays, but
are significantly faster than period PCs
in terms of 2D display processing, for
example.

The current machines running HP-UX
are Itanium based HP Integrity servers.
In addition to HP-UX, they can also run
Linux, Windows Server and NonStop
and OpenVMS which HP has acquired
through business mergers. Intel contin-
ues to develop the Itanium processors.

NeXT
NeXT was established by Steve Jobs in
1985 and it had a fairly short history,
but it did manage to launch a few UNIX
workstations in the late 1980s and early
1990s that were notable – and not only
because of their cubistic appearance.

The NeXT Computer, NeXTcube and
NeXTstation were based on Motorola’s
68030 and 68040 processors and the
56001 DSP that provided multimedia
functionality. A separate RISC acceler-
ator with a dedicated GPU was also
available, but it was never properly
utilised by software. Instead of floppy
disks, NeXT used magneto-optical disks
with a capacity of 256 megabytes.

NeXTs run NeXTSTEP, a UNIX
operating system based on the Mach
microkernel and BSD – and the other
similarities with Apple’s Mac OS X are
not coincidental, either. For example,
the system software is written in
Objective-C, and instead of X-Windows,
it uses a proprietary graphics solution
with different user interface innova-
tions. NeXTSTEP also has a variant
called OpenStep that runs on x86,
SPARC and PA-RISC.

2016.1E32

M any computer
peripherals use
wireless radio con-
nections. Since
all radio traffic is

fairly easy to listen to without being
detected, the communications of these
peripherals have usually been scram-
bled by means of encryption.

Out of curiosity, I dug out an old
Logitech iTouch keyboard from the
year 2000. It sends the keystrokes at
a frequency of 27 MHz to a receiver
connected to a PS/2 port. The receiver
of this system is fairly large when com-

pared to the small, modern USB receiv-
ers, and studying the circuit board will
already reveal details about its opera-
tion and frequencies. The circuit board
has quartz crystals at different specif-
ic frequencies and an integrated FM
receiver circuit, among other things.
This gives us reason to believe that the
information regarding the keystroke is
transmitted as modulations of the ra-
dio’s carrier wave.

An easier way to analyse the oper-
ation is to listen to the radio. The 27
megahertz frequency can be heard on
any portable radio that has the 11-me-

tre shortwave band. Indeed, by placing
a radio in the same room, I can hear
the signal very clearly at a frequency of
27.140 MHz. It consists of bursts. One
burst is heard when a key is pressed,
and another when it is released. Hold-
ing the key down produces a series of
shorter signals. The side of the key-
board has a button labelled ”Connect”.
You would think that this is related to
renewing the encryption keys.

However, the portable radio is de-
signed for listening to radio broadcasts
on the AM band and uses a low-pass
filter. The filter may have removed
some of the information. I can achieve
a better bandwidth by using a cheap
USB digital TV tuner dongle. The
RTL-SDR software radio suite allows
for tuning the RTL2838 receiver chip
inside the dongle to an almost arbi-
trary frequency. I am also instructing
the device to bypass its TV signal de-
coding circuitry and to dump the raw
sample stream in real time on my com-
puter. The sample stream is an 8+8 bit
in-phase/quadrature (I/Q) representa-
tion of the radio signal. In this case, its
real part can be interpreted as PCM
with minor distortion and saved in
WAV format, for example. This way, I
can analyse and process the signal as if
it were sound.

A spectrogram of the sample stream
reveals that the signal is, indeed, a
special application of FM broadcast:
a binary frequency shift keying (FSK)
with a two-kilohertz shift. In an FSK,
the carrier frequency varies between
two values; one of them denotes one,
the other denotes zero. A rough esti-

Hacking

Hidden bursts
Alice has a wireless keyboard. But how safely can she use it
when Eavesdropping Eve lives next door?
Story by Oona Räisänen  Images by Oona Räisänen, Nasu Viljanmaa

Analysis of the raw sample stream.

33

mate based on the spectrogram would
indicate that the bit rate is around 870
bps. Therefore, I use C to write a pro-
gram that has an 870-hertz sine oscilla-
tor and a phase locked loop (PLL) that
locks the sine wave to the data. When
the oscillator reaches ascending zero,
the software outputs either zero or one
depending on the current frequency of
the signal, which can be determined by
means of Fourier transformation.

One keystroke generates approx-
imately 85 bits of data. The length
of the message varies slightly, which
means that there may be some sort of
encoding on top of the FSK. The first
part of the bit string seems to remain
the same, which suggests that it con-
tains a synchronisation, address or
header field. The end of the bit string
changes between keystrokes, especially
when different keys are pressed. It may
contain the PS/2 key code, but the en-
coding is not obvious.

The communication is not encrypt-
ed in any way. This is apparent because
the messages seem to match the key:
pressing a specific key will always gen-
erate a bit string that is more or less
similar. Even a simple encryption algo-
rithm would hide this correlation. This
also means that the Connect button is
not related to a key exchange.

The unknown variable fields in the
messages may be counters and check-
sums. They can be bypassed after a few
messages have been saved for each key:
this allows for creating a type example
or average for the messages and saving
them in a list that is linked to a specif-

ic key. After this, Eavesdropping Eve
can compare the received data to all
the bit strings in the list and rank the
options according to their Levenshtein
distance, for example. The key with the
smallest distance is then printed on the
screen, similarly to a keylogger.

In other words, using a Logitech
iTouch keyboard for typing is compa-
rable to shouting your passwords and
email messages across the room so
loudly that all the neighbours can hear
them.

Of course, it is possible that the
eavesdropper cannot access the key-
board in advance and try all the keys

individually. However, this is a minor
obstacle. For example, Eavesdropping
Eve can create statistics of the frequen-
cies of specific received bit streams
and compare them to the frequencies
of character combinations in a specific
language, for example. This is known
as frequency analysis, and it allows for
determining which keystrokes corre-
spond to which bit strings, even if the
protocol is completely unknown.

Current wireless peripherals have
switched from the 27 MHz band to
2.4 GHz, and encryption has, in all
likelihood, also improved. Of course,
frequency alone does not make listen-
ing more difficult or improve security,
although the TV receiver that I am
using cannot reach this band without
modification. Some peripherals use
encrypted Bluetooth or other common
protocols. My own couch keyboard
uses Logitech’s Unifying technology
that claims to use 128-bit AES encryp-
tion. However, its key exchange con-
tains some suspicious stages that may
warrant further investigation... Running a program that decodes the signal.

Bit strings from a few keystrokes.

2016.1E34

Software

L ack of knowledge can cause
each one of us to leak our per-
sonal details online. Sharing

information on the Internet is much
easier and quicker than elsewhere, and
this is why even personal matters can
sometimes end up in the wrong hands.
As a result of human error, someone
else may receive a private message in-
tended for someone you know.
The large corporations have noticed
that people are unaware of their pri-
vacy and they design their services for
collecting our private data. While this
is a form of spying, people are – tech-
nically – consenting to it. For example,
people agree to Facebook recording
everything and getting to know us.
This information allows advertisers to
target their advertising, and selling it
has become a large business.

But even the large corporations have
their own Big Brothers. In 2013, the
leaked PRISM programme revealed
that the largest online companies have
been sharing their user information
with the United States Government.

Privacy and its protection have both
social and technological aspects. On
the one hand, it depends on what infor-
mation the person is willing to share.
On the other hand, different devices
and software may spread information
about us. Luckily, systematic spying
and monitoring can still be prevented,
or at least it can be made substantial-
ly more difficult. This article explains
how.

Privacy starts with you
Common sense is your most impor-

tant tool for protecting your privacy
and maintaining control of your infor-
mation. Thinking a bit about it every
now and then will go a long way.

You should not disclose your own
name, email or other information at
every turn. Users of online services
should assess which information is re-
ally needed in order to deliver the ser-
vice. Of course, using your real name
and email is often preferable, but they
also make the user very easy to track
down. In some cases, you can use a
temporary email address offered by
10 Minute Mail or Guerrilla Mail, for
example.

Even a regular photograph can con-
tain information which can be traced
back to the photographer. Of course,
the place in the picture can be identi-
fied, but the file itself may also contain
other information. Photos contain Exif
(Exchangeable image file format) data

that often include the model of the
camera, the time the photo was taken
and the GPS coordinates. These allow
for determining the location where the
photo was taken. Exif data can be de-
leted and edited with the Jhead appli-
cation, for example.

The joys of free software
You should only use software that you
know and trust on your computer. Be-
fore downloading software, you should
always assess how reliable the authors
and the source of the download are.

Software that is designed for spy-
ing on users and gathering user data
is practically always closed-source,
which makes studying its inner work-
ings difficult. In many cases, modify-
ing the software is also forbidden in
the licence agreement.

Open source operating systems and
software are a good starting point in

Escaping Big Brother
While online, you always have a big brother watching you. However, he can be led astray.
Learn the basics of reclaiming your privacy.
Story by Santeri Tani  Images by Nasu Viljanmaa, Santeri Tani

Vidalia and the Tor browser inside the Tails operating system disguised as Windows XP.

35

terms of privacy. Their source code is
freely available, which makes it more
difficult to hide suspicious code in the
software.

The use of free software can be con-
sidered an ethical choice. The Free
Software Foundation promotes free
software and provides information re-
garding it. The foundation’s principles
are based on open source, but especial-
ly on the freedom to use and modify
software. The Free Software Founda-
tion has defined the following four
principles for free software:
•  The freedom to run the program as

you wish, for any purpose.
•  The freedom to study how the pro-

gram works, and change it so it does
your computing as you wish. Access
to the source code is a precondition
for this.

•  The freedom to redistribute copies
so you can help your neighbour.

•  The freedom to distribute copies of
your modified versions to others. By
doing this you can give the whole
community a chance to benefit from
your changes. Access to the source
code is a precondition for this.
The Free Software Foundation has

created different licences for distribut-
ing software. The best-known of these
is the GNU General Public License that
has already become a symbol of free
software. Free software is also released
under many other licences, and some
of them have different definitions of
freedom. However, the openness of the
development work and source code is
the essential feature in terms of priva-
cy and reliability. For example, GNU/
Linux operating systems are generally
very free, but their repositories might
contain closed-source software.

For more information on the Free
Software Foundation’s free software
licences: http://www.gnu.org/licenses/

There are also operating systems
that focus on information security and
privacy. These include Privatix, Tin
Hat and Pentoo, all of which are good
choices for users concerned about
their privacy. More advanced users
may want to look into Tails, Janus VM
and Whonix. They are extreme privacy
solutions based on virtualisation and
anonymous networks.

Protect your data
Using free software from a reliable
source will avoid spyware with a high
level of certainty. However, the com-
puter’s hard drive is used to store pri-
vate data that may end up in the wrong
hands by other means. What if your
computer is stolen?

A variety of encryption software is
available for protecting your data. The
hard drive can be encrypted at the file
system level, which means that all the
data is saved in encrypted form. En-
crypting individual files within the
file system is also possible. This may
require manual encryption operations.

GNU Privacy Guard (GPG) and
TrueCrypt are examples of good en-
cryption tools. The Linux kernel in it-

self contains encryption functions that
can be used to encrypt the hard drive
file system. The installers for some
GNU/Linux operating systems pro-
vide the option to create an encrypted
partition for storing data.

The Internet
Internet users leave behind a large
number of traces. Devices connected
to the Internet have an IP address that
is used for identifying the device and
routing data. While you are connect-
ed to the Internet, your IP address is
saved in several locations, such as the
databases of online stores and discus-
sion forums. The IP address can be
used to easily determine the user’s In-
ternet Service Provider (ISP) and ap-

The tinfoil hat section
– how to achieve ultimate privacy
•	 Never let anyone else use your computer.
•	 Only install and use free software.
•	 Before installing the operating system, use a special disk such

as Darik’s Boot and Nuke to completely wipe your system.
•	 Protect your hard drive and OS by means of multiple passwords. Remember that

even the BIOS password can be circumvented by removing the motherboard battery,
for example.

•	 Use TrueCrypt, GNU Privacy Guard or an equivalent to encrypt your hard drive, home
folder and all your important files. Never store the most sensitive information outside
of your own head.

•	 Even if you are using GNU/Linux or an open-source BSD operating system, use virus
protection and firewalls such as ClamAV, Snort and Chkrootkit.

•	 Delete files using Bleach Bit or Srm, since normal file deletion only marks the data as
unused. The data itself is preserved until it is overwritten. This is unnecessary on an
encrypted drive.

•	 Check the cryptographic signature or other certificate of any downloaded software by
using GNU Privacy Guard, md5sum, sha1sum or equivalent software.

•	 Make sure that your browser cannot be traced by using EFF’s user agent comparison
tool (https://panopticlick.eff.org/).

•	 All network traffic should be routed through networks that protect your privacy, such
as Tor, i2p, Freenet or Hyperboria.

•	 VPN and Tor: Only connect to Tor via a Virtual Private Network (VPN). These are
available from IPredator and Tor VPN, which also accept anonymous payments via
Bitcoin. You need to be able to rely on the provider of your Virtual Private Network at
least as much as on the provider of your network connection. Proxies will often leak IP
addresses and are unencrypted.

•	 Whonix: Mask your IP address by running virtual operating systems within your oper-
ating system and using one of them as a router for Internet traffic. This way, not even
malware with root credentials can determine your real IP address.

•	 Tails: When using the Internet on other computers, use the Tails operating system that
runs from DVD or USB.

•	 Never use wireless networks.
•	 Never use JavaScript, never switch on ”Do Not Track” and never accept cookies. Use

the IceCat browser and Jon Do Fox’s privacy profile.
•	 If you simply must use a social network, use an alternative such as Diaspora or Friendica.
•	 Perform your web searches with Ixquick, Startpage or the distributed Hyperboria.
•	 Turn off your Internet connection when you no longer need it.

http://www.gnu.org/licenses
https://panopticlick.eff.org

2016.1E36

proximate location. The police and na-
tional intelligence services can receive
information on the person behind the
IP address from the ISP’s records (or
by simply spying on them).

The PRISM programme revealed
that the data traffic for all major online
services is routed through the hands
of the US National Security Agen-
cy (NSA). The most popular services
such as Facebook, YouTube and Goog-
le may constitute the largest part of a
basic user’s online traffic, which ex-
poses them to the NSA continuously.

Most data traffic is unencrypted. The
ISP, as well as other parties, can super-
vise the traffic if the communication
between the online service and user is
not encrypted or the connection is not
made through a Virtual Private Net-
work (VPN).

You should browse the Internet with
an open-source browser such as Fire-
fox or its sisters, IceWeasel and IceCat.
Users who want a Chrome-type brows-

er should consider the open-source
Chromium.

You should disable browser histo-
ry and cookies. If you need and want
cookies, the Better Privacy extension
is useful for managing them. Some
browsers have a ”Do Not Track” set-
ting that can be used to turn off track-
ing for some websites. It may work, but
it can also make the user’s browser eas-
ier to identify.

In Firefox, you can adjust the user
agent setting to make your browser and
OS less identifiable. In a way, this hides
the browser in the crowd and does not
leave any unique clues behind.
•  Typing ”about:config” in the ad-

dress bar will allow you to edit the
settings.

•  Add a new setting called ”general.
useragent.override”.

•  Enter a very generic user agent,
such as ”Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-GB; rv:1.8.1.6)
Gecko/20070725 Firefox/2.0.0.6”.

This setting makes the browser tell the
server that you are using Windows XP
and Firefox 2.0.0.6. If you want to be
especially careful, you can also add the
values in Table 1 in order to prevent
browser identification.

Websites can run scripts in your
browser. Some of them monitor the
actions of the user, and some can even
be classified as malware. NoScript for
Firefox or Scriptsafe for Chromium are
add-ons that allow the user to control
the running of scripts.

And, of course, you should use an
encrypted connection whenever pos-
sible. HTTPS Everywhere is an add-
on created by the Electronic Frontier
Foundation. It checks whether the site
offers the encrypted https protocol.

Instead of the official Java, consider
the free IcedTea implementation. In-
stead of Flash, consider Gnash. Instead
of using Google as a search engine,
consider Ixquick, Startpage or Duck
Duck Go.

But even after all this, using a web
browser will make the user fairly vul-
nerable. Persons who are concerned
for their privacy will only use web
browsers for matters where using real
names is mandatory.

Tor
The anonymous network Tor has rap-
idly gained popularity in recent years.
It is fairly secure when used correctly.
Tor was created as a government-level
communication tool and was funded
by the United States Naval Research
Laboratory (NRL). In 2004, Tor started
to receive funding from the Electronic
Frontier Foundation, an organisation
promoting electronic rights, and be-
came free software. Currently, Tor is
an autonomous project that is funded
by donations. The governments of the
United States and Sweden are the larg-
est contributors.

Tor nodes are mostly maintained by
private individuals. There are approxi-
mately five thousand active Tor nodes,
which is much too few for four million
daily users. The low number of nodes
and high number of users results in
slow data transfer over the Tor net-
work.

The Tor software launches a SOCKS
proxy server on the computer and uses
it to transfer the data. The Tor net-
work uses onion routing encryption,

general.useragent.override Mozilla/5.0 (Windows NT 6.1; rv:10.0) Gecko/20100101
Firefox/10.0

general.appname.override Netscape

general.appversion.override 5.0 (Windows)

general.oscpu.override Windows NT 6.1

general.platform.override Win32

general.productSub.override 20100101

general.buildID.override 0

intl.accept_languages en-us,en;q=0.5

network.http.accept.default text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8

network.http.accept-encoding gzip, deflate

Table 1. This makes Firefox appear as a popular standard browser.

user

target server

Tor node

Encrypted
connection

Unencrypted
connection

Structure of the Tor network.

37

which is based on transferring the data
through three Tor nodes. The user’s
computer connects to the first node
and only sees its IP address. The first
node only sees the address of the user
and the second node, and the second
node only sees the address of the first
node and the final node in the chain.

Connections between nodes on the
Tor network are encrypted, with the
exception of the connection between
the last node and the target server.
None of the parties sees the entire
chain. For example, the target server
does not know who initiated the con-
nection, since it seems to be coming
from a Tor network node.

The easiest way to use Tor is to down-
load the Tor Browser Bundle from the
Tor Project website. It includes a Fire-

fox browser that has been preconfig-
ured for use on the Tor network. It also
includes the Vidalia control panel for
adjusting the network settings.

In addition to anonymous network
use, the Tor network can also be used
to set up hidden services that can only
be accessed via the Tor network. In a
way, Tor and its hidden services are a
network inside a network. The top lev-
el domain for these services is .onion.

In order to circumvent censorship,

the Pirate Bay launched its own Pira-
teBrowser that is nearly identical to
the Tor Browser Bundle but only runs
through one node instead of three.
This means that PirateBrowser is not
a strong form of privacy protection,
since the node between the user’s com-
puter and the target server can see
both IP addresses.

Why Tor – are you a freedom
fighter or a terrorist?
Tor has received both positive and neg-
ative publicity. Edward Snowden, the
NSA whistle-blower, used Tor and the
Lavabit email service to send informa-
tion on the US government’s PRISM
programme to the press. Services such
as Global Leaks and the New Yorker
Strongbox strengthen Tor’s position as
a tool for freedom of speech, since they
can be used to safely send news items
to the world.

The governments of some countries
regulate international Internet con-
nections very strictly. This can make
Tor an important channel for relaying
sensitive information. However, iden-
tifying and blocking Tor connections
is possible.

There will always be those who
misuse the anonymity and freedom
of speech: hidden websites have been
used to distribute several terabytes of
child pornography and to sell drugs.
Tracking down these hidden servic-
es and their users is difficult, but the
intelligence service of a country that
focuses on cyber security may pull it
off. The Federal Bureau of Investiga-
tion, for example, installed a JavaScript
application on a server distributing
illegal material in order to spy on the
users of the server.

Tor and other encryption techniques
may promote freedom of speech as well
as unlawful activities. The technology
in itself has no morals and it does not
choose sides. Furthermore, it is not al-
ways clear who the villain is: the same
person may be a freedom fighter for
some and a criminal for others. 

The New Yorker’s service for anonymous news tips and information.

Official website for checking the operation of Tor, https://check.torproject.org/.

Useful Tor addresses
•	 One of the oldest sites listing hidden services, maintained by the Tor project:

http://eqt5g4fuenphqinx.onion/
•	 A Finnish search engine containing legal .onion sites: https://ahmia.fi/
•	 Tor version of the Duck Duck Go search engine: https://3g2upl4pq6kufc4m.onion/
•	 Privacy-driven email service URSS Mail: http://f3ljvgyyujmnfhvi.onion/

https://check.torproject.org
http://eqt5g4fuenphqinx.onion
https://ahmia.fi
https://3g2upl4pq6kufc4m.onion
http://f3ljvgyyujmnfhvi.onion

Culture

2016.1E38

F inland has the most
demosceners per capi-
ta in the whole world.
Most of Finland’s best
IT experts have a back-
ground in demos, the

Finnish game industry is more or less
dominated by demosceners, and the
most significant computer hobby-
ist events were originally demoscene
gatherings. Very few can appreciate
demos as an art form, however. How
could blobs that bounce to the beat
of a monotonous tune be interesting?
Why is no one interested in a deeper
message and plotline? Are demos ac-
tually worthwhile to anyone who is not
a member of a secret society?

Talent contest
Demos were born when young com-
puter hobbyists wanted to showcase
their skills. Games already had copy
protection in the early 1980s, which

made the ability to crack them a val-
uable asset within the community.
And, naturally, you had to sign your
own work. The crackers started by ed-
iting their initials into the texts in the
games, but before long, creating stylish
signatures also became a dedicated
sport. This gave rise to crack intros
and separate demonstrations of skill –
demos.

In earlier demos, in particular, most
elements can be purely classified as
bragging: ”Look at me, I made this!”
Those who set new records could also
say ”Look at me, this is possible!” The
viewing experience is affected by your
understanding of the technological
framework involved, as well as the
knowledge of what has been done ear-
lier within the same limitations. The
uninitiated might be in awe of an av-
erage four-kilobyte demo, since they
have no prior experience of what has
been achieved in this file size.

Pitting one’s skill and achievements
against others still remains an im-
portant motivator for making dem-
os. Even though the age of testoster-
one-filled gang wars is behind us, most
demos are still released at demo com-
petitions, or ’compos’ for short, where
the winners are selected by public vote.
Of course, there are many ways to ap-
peal to a crowd, but breaking techno-
logical barriers with style continues to
work well.

However, the limits of modern com-
puters are difficult to reach, and the
game industry with its million-dollar
budgets also raises the bar for its part.
Over the years, the technical innova-
tion within the demoscene has shifted
from the multiple-megabyte demos
towards stricter categories that typical-
ly limit the size of the executable, the
platform, or both. An executable of a
few kilobytes in size cannot store an
enormous 3D landscape by traditional

Why demos suck
You cannot talk about Finnish computer culture without mentioning

the demoscene and its productions. However, the essence of demos
is not often understood. Skrolli will now attempt to explain how you

should approach demos in order to get something out of them.
Story and images by Ville-Matias Heikkilä (Viznut/PWP)

C-64 demo from 1986: A scroller that crosses into the screen border?
See it to believe it! (1001 Crew: Border Letter I)

C-64 demo from 2008: A plasma effect that crosses into the screen
border? Yawn, another raster timing exercise! (Booze Design: Edge of
Disgrace)

39

means; it needs to be generated proce-
durally. On 8-bit machines, on the oth-
er hand, a universal 3D engine will not
get you far. In order to accomplish new
things, you need to utilise the charac-
teristics of the hardware in unconven-
tional and creative ways. Someone
once compared demosceners to ninjas:
they simply must use the window even
when the door is in plain sight.

The importance of limitations and
challenges has created a unique rela-
tionship between the demoscene and
different computing platforms. In
traditional computer culture, hard-
ware characteristics always finally
boil down to computing power, and
old computers are replaced by newer,
more powerful ones. For demo writ-
ers, however, all platforms exist here
and now, each with their own special
features and limitations that give rise
to specific challenges and aesthetics.
In addition, the platform choice is in-
fluenced more by personal taste than
the age of the author: hobbyists born
in the 1990s, for example, may prefer
the Commodore 64 for their demo art
instead of a modern PC, and nobody
will consider this odd in any way.

Value in beauty
Technical achievements are short-
lived, however. Someone will always
advance the technique, making old
achievements less spectacular. Dem-
os that are enjoyable year after year
and decade after decade are also aes-
thetically pleasing: they offer good
music, beautiful graphics and smooth
transitions. Most modern demos, in
particular PC demos that have very
loose limitations, abandon all techni-
cal flamboyancy and are built solely
on aesthetics. In other words, you can
enjoy demos without any in-depth
knowledge of their inner workings.

Demos have had the aesthetic di-
mension since the beginning. Many
long scroll texts from the 1980s would
have been left unread if they had not
been accompanied by good music and
beautiful raster bars. You could keep
the same part running for hours, since
the user could move to the next part
by pressing the spacebar, for example.
The ’trackmo’ style became dominant
in the early 1990s; it combined music,
visual displays and loading new con-
tent from disk into a music video-like

experience that lasted a few minutes.
Most modern demos still adhere to the
trackmo structure.

Typical demo aesthetics are usually
not very easy to approach. Some peo-
ple try to view them as short films,
which makes them appear scattered
and lacking in content. Those who
approach demos like music videos or
VJ sets can usually get more out of
their visual style. In any case, watching
demos takes some getting used to. It is
like learning a new genre of music that
has visual instruments in addition to
the audible ones.

A genre is also a good point of ref-
erence since most demos are very
focused on form. The same stand-
ard elements and stylistic touches are
repeated from one demo to another:
sending greetings to other groups,
rotating cubes in honour of old tra-
ditions and syncing everything to the
beat of the bass drum. Of course, many
groups have their distinct style, but the
genre features are nevertheless hard to
miss.

In part, this focus on form is due to
the competitions where the works are
ranked. An experimental demo might

What better way to ridicule the PC scene than to recreate its most over-
estimated demo on the C64. (Smash Designs: Second Reality 64, 1997)

Once all the standard platforms have been conquered, it is time to up
the ante. (Trilobit: Doctor, Atari 2600, 2008)

Landscapes are a mainstay in miniature-sized demos. Nowadays, the
entire landscape is generated in shader language. (RGBA, Elevated,
PC-4K, 2009)

Many have considered this Russian demo humorous, but the author
is serious about their political message. (Cyberpunks Unity: R, ZX
Spectrum, 2004).

2016.1E40

not succeed, and overly emphasising
content may be seen as a questiona-
ble attempt to beat another entry that
demonstrates higher technical skill.
On the other hand, many of the scene
veterans also suffer from a lack of am-
bition – for them, simply doing some-
thing in order to prove that they are
still active is sufficient.

Do we even need substance?
In addition to technique and aesthet-
ics, many demos also seem to include
actual substance: themes, plotlines and
even messages. Mostly, however, this is
all smoke and mirrors. If the audience
consists mostly of people unfamiliar
with demos, it is a good idea to take
the aesthetics in a more cinematic di-
rection. This makes it seem as if the
demo is telling a story. However, the
depth of this narrative is usually com-
parable to Italo-disco lyrics.

Whether demos are an art form was
already under discussion in the 1990s.
For many, demos are more compara-
ble to handicrafts; they are exercises in
technique that create aesthetics with-
in the limits set by technology. On
the other hand, there are also demos
that emphasise artistic presentation

and only use technology as a medium.
Most demos are somewhere between
these extremes, but usually closer to
handicrafts than art.

In principle, the technology behind
demos offers an excellent platform for
content-driven works. However, turn-
ing your idea into a demo does not
usually make sense unless the choice
of technique in itself is a part of the
message. Someone wishing to make
animated films, for example, will be
better off learning an animation suite
than coding demos. On the other
hand, if your idea is so unusual that
no existing technique seems to suit it,
demos may be a viable platform.

The limits of expression
The common conception is that break-
ing technological boundaries is the
unwavering foundation for all demo
art. Technology is always taken to new
extremes, achievements are compared
and the innovators of new tricks rise
above all the others. Content, form and
aesthetics are most often considered
by-products and their boundaries are
not broken as eagerly.

However, pushing the limits of ex-
pression has always been a part of

demo art. The current demo aesthet-
ics would have never been born if the
Amiga groups in the 1990s had not
broken preconceptions concerning
what demos can be. If a demo differs
too much from the stabilised norms, it
may be very poorly received. In order
to protect their reputation, many demo
authors publish their more avant-gar-
de demos under a different alias than
the one they use for the ”serious” pro-
ductions. Demos with extreme styles
often draw upon ’noise’ or ’glitch’ aes-
thetics and use an ambient soundtrack
in place of more conventional styles.
Only the imagination is the limit for
these experiments.

However, there is one standard that
even the most avant-garde demo au-
thors will not touch – the fact that
demos are exactly the same on each
run.

The main reason for their stubborn-
ly static nature is probably that they
are designed for single showings dur-
ing demo competitions. Nothing must
go wrong during the execution, which
makes minimising the uncertainties
a sensible choice. Code that operates
at the technological extremes may be
prone to errors. Creating a fixed run
scenario can help to remove some of
them. Furthermore, most demo pro-
grammers also write code for a living,
which makes it understandable that
they do not want to focus on bug-hunt-
ing and handling exceptions.

Demos would probably be more
random and interactive if their main
venue was still the home computers
of individual hobbyists. Even a small
amount of dynamism could also be
used to explore the large grey areas
that fall between demos, games and
software toys. This might uncover en-
tirely new barriers to break. However,
the main motivation for demo authors
are the demo events and their stand-
ardised competitions, and few people

When is this going to start? I don't get it; it should be disqualified! (Halcyon: Chimera, PC, 2002)

A beautiful, technically impressive 64K PC demo with a ray-tracer routine – but did you really
need to ruin it with bad poetry? Luckily, it can be switched off. (Exceed: Heaven Seven, 2000)

41

feel the need to publish anything out-
side of these events.

Some people will never get it
Demos may suck for a number of
reasons. Their aesthetics are hard to
grasp, their formulaic nature is dull,
there is no real content behind the fa-
cade and the inside jokes fly over your
head. The technical achievements are
hard to understand or appear petty.
Although most demos are poor, even
in the opinion of their authors, the un-
initiated find it difficult to appreciate
even the good ones.

The cliquey atmosphere, which is
also typical of other subcultures, has
been a blessing and a curse for the
demoscene. On the one hand, it has al-
lowed demo art to develop on its own
terms and in its own direction and, on
the other hand, it has also made demos
difficult to approach and very formu-
laic. At their worst, the scene’s internal
standards prevent demos from finding
new paths and their authors from see-
ing further.

The problem with cliques has been

acknowledged for a long time. At the
turn of the millennium, when the
demoscene had already ceased its
rapid expansion, demo art entered
the mainstream. The scene started
connecting with the art and science
circles, writing books and arranging
demo shows and seminars. The Alter-
native Party, an event arranged since
1998, has questioned the standards of
the demoscene and tried to find fresh
views on demo art.

Although the efforts have been fruit-
ful, the basic problem has remained:
making demos is largely an inside
hobby that is difficult to place inside
an external framework. Demos are too
shallow for art, too eccentric for enter-
tainment and too technical to attract
academic interest. Gamers cannot play
them and hackers cannot read their
source code. Demo authors may find
it difficult to discuss the topic with
people who do similar things for dif-
ferent reasons. In order for demo art
to receive the approval and apprecia-
tion it deserves, we need research that
defines its relationship with the rest of

the world.
Academic research into demos has

matured in recent years as research-
ers have found theoretical concepts
that are suitable for describing them.
For example, Daniel Botz, who wrote
his dissertation on demo aesthetics,
has found that, for demo authors, the
different platforms are not so much
tools as raw materials for forming their
works. Digital media researchers Nick
Montfort and Ian Bogost have set up
a new field of research, platform stud-
ies, which may prove highly useful in
demo research, as well.

Demos are a unique form of expres-
sion that offers limitless possibilities
and is guided by radical technical ex-
perimentation. However, traditions
and formalities are limiting their
potential. It would be beneficial for
the future of demos if people made,
watched and understood them even
outside of the traditional demoscene.
This is why Skrolli will be discussing
demo culture in the future, as well. 

Not even the holy cow of these skill competitions is safe from criticism.
(ISO: Vati, PC, 1997)

In its time, even this classic was frowned upon, as it favours content
over technical achievement. (Spaceballs: State of the Art, Amiga, 1992)

Greetings must always be sent in traditional fashion, even if your
demo is built around a hardcore punk soundtrack. (Traktor: Jesus
Christ Motocross, Amiga, 2009)

At first glance, this seems to be saying something, but in reality, it is a fair-
ly incoherent series of miscellaneous cool stuff. (ASD: Lifeforce, PC, 2007)

2016.1E42

Games

S ega originated from a com-
pany called Service Games
that was established in Ha-
waii in 1940. After World
War II, the founders, Ray-

mond Lemaire and Richard Stewart,
moved operations to Japan, where the
United States had set up several mili-
tary bases. Service Games imported
jukeboxes and other entertainment
from the States for the enjoyment of
the military personnel stationed there.
The company merged with a compet-
itor, Rosen Enterprises, shortened its
name to Sega and soon found that it
had become a manufacturer of enter-
tainment devices instead of only an
importer.

The arcade business was booming
in the 1970s, and Sega grew alongside
it. However, arcades lost momentum
in the early 1980s, and falling reve-
nues scared the company’s American
owners. The Japanese branch started
to gain more influence. At the same
time, the company turned its attention
towards the consumer market, and
its first console SG-1000 (Sega Game
1000) was launched to compete with
the Nintendo Famicom in 1983.

The SG-1000 was not a success, but
Sega continued developing it. Through
various iterations, it finally became
the console known as the Sega Master

System. Even though SMS was unable
to dethrone Nintendo, it did find a fol-
lowing in Europe and South America
and lived until the 1990s.

MegaDriving it home
The 16-bit Mega Drive (Genesis in the
US) was Sega’s only undisputed suc-
cess. Its design drew on the compa-
ny’s finest expertise. Sega’s System 16
arcade hardware had already demon-
strated the capabilities of the combina-
tion of Motorola MC68000 and Zilog
Z80, and by 1989, its price had fallen to
mass-market friendly levels.

The company wanted to ensure suc-
cess in the United States, in particular.
Sega had ditched its old marketing
partner, the toy company Tonka, and
built Sega of America from scratch by
recruiting the best people in the busi-
ness. It had also offered the Genesis to
Atari, but the Tramiels were not keen
on the idea. This was probably for the
best. Across the pond, the company
purchased the publisher Virgin Mas-
tertronic and turned it into Sega Eu-
rope.

Mega Drive was launched two years
before its main competitor, the Super
Nintendo. Its games looked especially
good alongside the ageing NES, and
Sega of America’s marketing milked
this to the last drop. Genesis does what

Nintendon’t was a catchy phrase, but
sales were initially unconvincing: only
half a million consoles were sold dur-
ing the first year.

Halfway through 1990, Tom Kalin-
ske was appointed the CEO of Sega
of America, and he immediately set
things in motion by hiring top people
in his management team, lowering the
price of the console and launching the
development of games that were espe-
cially designed for the Western market.
These were smart moves that brought
Sega a 65% share of the 16-bit mar-
ket in North America. Sales were also
healthy in Europe, and the console sold
approximately 29 million units during
its lifetime. This made the lacklustre
success in Japan easier to tolerate.

Now what?
In order to maximise its profits from
the Mega Drive, Sega started to inno-
vate different accessories. CD-ROM
was a buzzword, so a CD add-on
sounded like a good idea. The Me-
ga-CD (Sega CD in the States) saw the
light of day in late 1991. In addition to
a CD drive, it also added graphics pro-
cessing power, but failed to attract buy-
ers. One of the reasons was that most
games were grainy full-motion video
affairs with very little actual gameplay.
Fewer than 10% of Mega Drive owners

Fail!
How SEGA
dropped the ball
In 1992, Sega held 65% of the U.S. console market. Less than ten years later, it withdrew from
the hardware market entirely. How was this even possible?
Story by Mikko Heinonen  Images by Wikimedia Commons/Evan-Amos

43

bought the CD add-on.
The Mega Drive was

also licensed to other man-
ufacturers. At least Aiwa, JVC and
Pioneer made their own versions
with special additions. Aiwa’s version
doubled as a radio and CD player, the
JVC had a karaoke function and the
Pioneer LaserActive played LaserDisc
movies. It even had a few LaserDisc
games. Sega also produced several var-
iants, such as the Mega Jet designed
for use on board airliners, but none of
them became very popular.

Stormy weather on Saturn
Most successful companies struggle
with finding the next big thing, but
very few go as far as Sega did. The op-
posing parties were Sega of Japan, the
cornerstone of the entire company,
and Sega of America, the creator of
its greatest success. The topic was, of
course, how to master the next gener-
ation.

Sega’s R&D was traditionally based
in Japan. There, the company’s engi-
neers had developed the Virtua se-
ries of coin-operated games that were
groundbreaking in the early 1990s.
However, their technology was far too
expensive for home use, so Sega had
launched a project with Hitachi for the
development of a new RISC processor.
The new console would be known as
the Saturn, and it would include two
parallel SH-2 processors and a host of
other chips.

The Americans considered the ar-
chitecture unfeasible. Kalinske con-
tacted Silicon Graphics and asked for
help in designing the graphics chip
for the Saturn, but Japan called off the
deal. Soon afterwards, SGI teamed up
with Nintendo to create the Nintendo
64, a substantially more successful de-
vice. It was also rumoured that when
Sony and Nintendo fell out over the

design of the Super Nintendo CD-
ROM expansion known as the Sony
PlayStation, Sega of America had

tried to negotiate a deal on the hard-
ware. However, Tokyo was adamant
that no outside help would be enlisted.
Nevertheless, after seeing the PlaySta-
tion prototype, Sega’s management de-
cided to revise the design of the Saturn
and add more 3D processing power.

32 times the misfortune
The development of the Saturn was
proceeding slowly and competitors
were launching new products. As a
stopgap solution, both halves of Sega
decided to turbo-charge the Mega
Drive. An add-on known as the 32X
was created; it included RAM, two
SH-2 processors and a selection of
other hardware. The unit, which was
placed on top of the 16-bit workhorse,
required a dedicated power supply,
but it could utilise the controllers and
possible CD drive of its host. Cartridg-
es would be the preferred format for
delivering games, however. The goal
was to launch the product on the US
market for the 1994 holiday season in
order to compete with the 3DO and
Jaguar, among others.

Sega of America was left in charge of
the 32X, while Sega of Japan focused
on finalising the Saturn. The work suf-
fered from chip shortages and the fact
that documentation for the processors
was only available in
Japanese. The real
bomb dropped,

however, just as the device was being
launched. Sega of Japan was bringing
the Saturn to the Japanese market on
22 November 1994, one day after the
US launch of the 32X. Even though
the 32X shared some chips with the
Saturn, it had no software compatibil-
ity, and the Saturn had no slots for the
32X’s game cartridges.

Sega of America had been given a
mountain they could not climb. First
of all, the entire device was now point-
less in terms of overall strategy. Sec-
ondly, the consumers were wondering
why it was even being offered to them
when an entire new console was only
a few months away. Against this back-
ground, sales of fewer than 700,000
sold consoles and 40 published games
could be considered a win, but in real
life, this was a bitter and expensive dis-
appointment. The add-ons were soon
in the bargain bins and American con-
sumers, in particular, had very nearly
had enough of Sega’s useless product
introductions.

In the shadows of
the PlayStation
The US launch date of the Saturn was
set at 2 September 1995, one week be-
fore the PlayStation. However, Sega of
Japan panicked and wanted to bring
the launch forward, despite the fact
that the Genesis was still selling. A
plan was hatched where Sega contact-
ed a few distributors and agreed on
advance sales of 30,000 units in con-
nection with the E3 expo in May 1995.

Sega’s surprise attack was a com-
plete and utter disaster. Other dis-
tributors were not informed, which
caused many of them to become very
upset. KB Toys, a large retail chain,
terminated its contract entirely. Buy-
ers of the advance units were only
offered a few games made in-house

at Sega, since not

2016.1E44

even third-party developers were told
about the changed plans. This meant
that there were no queues to speak of.
The final nail in the coffin was Sony’s
announcement at E3: the PlayStation
would launch at $100 below the price
of the Saturn. Sony’s cheaper console
would be the more popular choice. At
the same time, launching the Saturn
efficiently killed off the sales of the
Genesis, which had already been wan-
ing.

After this battle, the war had been
lost. The Sony PlayStation decimat-
ed the Saturn on the US and Europe-
an markets. Japan was the only place
where Sega could compete at all. To-
tal sales of less than 10 million meant
that the Saturn was the weakest of the
big three: Nintendo 64 shifted 30 mil-
lion units and PlayStation broke 100
million. The complex architecture of
the Saturn made cross-platform ports
difficult and popular 3D titles looked
worse on the Saturn almost without
exception. Sega’s own quality titles
only went so far.

Sega lost hundreds of millions of
dollars in the Saturn project, and its
management was also in turmoil. Tom
Kalinske left the company completely,
and even the executives at Sega of Ja-
pan switched tasks in rapid succession.
It was evident that the company could
only make one last effort.

An innocent casualty
The Dreamcast was the successor to
the Saturn and quite probably the best
console ever developed by Sega. It
might even be one of the best consoles
ever, period. Its development was not
free from drama, however. Sega had
originally partnered with 3dfx for the
development of the graphics chip,
but the plans were leaked.
The PowerVR2, which
was chosen as the re-
placement, was
still very adequate
for 1998, however.
Furthermore, Sega
also brought a solid
line-up of its own
games to the Dream-
cast. This makes it all
the more tragic that
the Dreamcast also
carried the burden
of Sega’s old mistakes

from the very beginning.
Nevertheless, the US launch

was excellent, and Dreamcast
held the record for the most
consoles sold on launch
date for a long time.
Pre-orders alone ac-
counted for over
300,000 consoles.
There was even
some positive buzz
in Europe, but Ja-
pan remained unim-
pressed. This was a shame,
since the Japanese had a dispos-
able income that Sega could have used.

Sales were not as great after the
launch, since the earlier mishaps had
alienated some of the resellers, as well
as the publishing giant Electronic Arts.
The lack of EA’s annual sports titles
caused many buyers to abandon the
machine, even though Sega did make
an effort to replace them with its own
Sega Sports range. Buyers and resellers
were still bitter about how quickly Se-
ga’s previous products had become ob-
solete.

The Dreamcast was finally killed
by Sony’s advance marketing of the
PlayStation 2. A few years ago, the Sat-
urn had been destroyed by the origi-
nal PlayStation, and now, the mere
promise of a new version was enough
to stop Sega’s marketing in its tracks.
The company had depleted its cash
reserves with the Saturn, and it had
no salvos left to counter Sony’s media
blasts with. Moreover, the Dream-
cast was missing a DVD drive, which
many buyers wanted in their next-gen
console. After posting huge losses for
three consecutive years and selling ten

million Dreamcasts, Sega threw in the
towel in January 2001. The DC would
be killed off and the company would
resume operations as a game publisher.

An honourable end
The old Sega went down guns blazing.
Going all in on the Dreamcast ensured
that it will be fondly remembered by
gaming historians. The company used
up its last resources to write a swan
song that had a lot going for it. The
original game series created for the
Dreamcast saw sequels on other con-
soles, and Sega finally turned a profit
by selling them on Sony, Nintendo and
Microsoft hardware.

However, a feeling of wasted poten-
tial is also inevitable: the Dreamcast
showed what Sega could do when its
different departments were not fight-
ing each other. Many players consider
it to be the last hardcore games con-
sole. The Sega Saturn, on the other
hand, is probably the only system that
failed so hard it also killed off its tech-
nologically superior successor. 

45

2016.1E46

O ur everyday life is
assisted by a num-
ber of devices. One
of them wakes us up,
another prepares our

morning coffee and we use a third one
to travel to work. Devices allow us to
receive and share information, inspira-
tion and ideas.

Humans have a unique ability to
build tools and boost productivi-
ty. This characteristic has created an
environment that we ourselves have
shaped – civilization. Our way of life
also tends to create more and more
objects. Obsolete and faulty objects
are discarded even though able hands
could give them a new life.

The healing power
of a hot air gun
I have spent a decade using hardware
that others have discarded. The work-
station that I am writing this article on
has been salvaged from the dumpster.
Teenagers had been using the comput-
er as a target for paintball practice. It
was missing a hard drive, but all the
other components were still inside.
The computer is a Dell Optiplex 760
with a quad-core Core 2 processor, a
GeForce GTX 460 graphics card and 8
GB of DDR2 RAM. It is by no means
the latest in hardware, but you cannot
beat it for the price. And when I found
it, it was only two years old. Not bad!

When I first tested the computer, it
booted up, but turned itself off after a
few minutes. I also tried another power

supply and got the same result. After
spending some time thinking about
the problem, I came to the conclusion
that one of the memory modules must
be damaged.

Running Memtest revealed that
one of the 2-gigabyte DDR2 memory
modules went haywire after it warmed
up. I went online to find a solution to
the problem. I decided to try a popu-
lar method for homebrew repairs of
graphics cards and game consoles –
baking them in the oven. However, in-
stead of placing the entire computer in
the oven, you should use a temperature
sensor and some tin foil to insulate the
electrolytic capacitors and plastic parts
that cannot withstand a temperature of
200°C (390°F).

I decided to use a hot air gun to heat
the broken memory module. I placed
the memory module on two blocks of
wood and started heating it at a low
temperature. I gradually increased the
temperature to the target of 200°C.
The memory module suddenly let out
an audible snap, and I was quite sure
it had died. Nevertheless, I decided to
test it on another motherboard. I let
Memtest run for a few hours and, to
my delight, I noticed that it was oper-
ating properly. I transferred the mod-
ule back to the machine I found – and
have been using it to this day!

This was clearly a manufacturing de-
fect, as I have not come across a mem-
ory module with a similar problem
since then. The Internet had pointed

Hardware

Cindy Kohtala and some loot from the Sortti recycling station.

Salvaging viable hardware
Electronic devices are commonly discarded when they become obsolete. However, a little
recycling and repairing could extend their service life.
Story by Albert Laine
Images by Nasu Viljanmaa, Andrew Gryf Paterson

47

me in the right direction, but there
were no guides available for reviving
RAM modules with hot air.

Successfully repairing the memory
module made me try the same meth-
od with other components that I had
found. The technique works with
graphics cards that display checker-
board artefacts or have no display
output. I have also used it to revive
numerous laptop motherboards. Many
GeForce GTX/GTS 8800 graphics
cards, which offer high computing
power, have the same issue.

I have put together a total of 13 dual
core computers from components
that I have salvaged and repaired, and
equipped them with graphics cards
offering 500–1,000 GFLOPS of perfor-
mance. The server farm in my office
has never let me down; every job has
been completed before the deadline.

Game consoles, laptop computers
and graphics cards commonly use
Ball Grid Array (BGA) surface mount
components. My experience is that
these are often damaged due to the
European Union’s RoHS directive. The
regulations forced manufacturers to
switch to lead-free solder around 2006.
Unfortunately, however, the high tem-
perature variations present in power-
ful components will break the solder
joints after 2–3 years – just in time for
new technology to enter the market.

In the end, the regulation that was
intended to preserve Mother Earth
ended up hurting it by multiplying the
amount of waste electronic equipment
and increasing the manufacture and
sales of new devices. The manufactur-
ers won again.

The power of duopolies
A duopoly is a common situation in a
capitalist market economy. It refers to
a situation where two competing com-
panies offer the same service or prod-
uct. In practice, two market leaders
communicate with each other in order
to divide the market and to synchro-
nise the releases of new products. De-
spite major differences in architecture,
the manufacturers offer similar perfor-
mance in the same price range.

Technological innovations and man-
ufacturing methods advance in leaps.
The design of a new type of Graphics
Processing Unit will take years, for
example. The company also needs to

generate an income during the de-
velopment, and steady sales are a re-
quirement for this. A few years ago, the
GPU manufacturers nVidia and AMD
were sued due to the suspicion of du-
opoly-like cartel agreements. There
were strong suspicions of market ma-
nipulation, and the accused settled the
case out of court with millions of dol-
lars. Since there was no court decision
on the case, the activities were allowed
to continue.

Consumers have poor memory. Yes-
terday’s state-of-the-art technology
will soon find its way to the already
enormous scrap heap. A great exam-
ple of this is the hardware decoding
of H.264 video. Graphics cards have
had this feature since 2004. The Ge-
Force 6600, for example, has hardware

H.264 decoding, but it only works with
a specific driver version and a specif-
ic version of specific video playback
software. Once the customer upgrades
the drivers, playback software or oper-
ating system, the feature stops work-
ing. This made the computer sluggish
when viewing high-resolution online
videos, and caused many consumers
to purchase a new device. If the decod-
ing support had been retained, there
would have been fewer buyers for new
hardware versions.

Fix-mod-hack!
I started my life with consumer elec-
tronics in the same way as everyone
else: as a consumer. When something
broke, it was taken to the shop for ser-
vice. I became interested in the oper-

Abandoned but powerful graphics cards. Pictured: GF9500, 8800 GT, Sapphire HD 3650, 8800
GTS and 9800 GT.

2016.1E48

ation of electrical equipment already
at an early age, even though my family
did not do any DIY repairs.

The first device I serviced was a VHS
recorder. The rubber surfaces of one of
its pulleys had dried up and could no
longer transfer power. Since the part
in question was not available over the
counter, I had to order one from a ser-
vice workshop.

As my next project, I replaced a
failed rectifier transformer on a televi-
sion. My bag of tricks started growing
with the help of some professional tips.
Soon afterwards, my friends heard that
I offered free repair service and start-
ed bringing me their broken bicycles

and Minidisc players. Little by little,
I started putting together computers,
bicycles and cameras. Practising with
hardware salvaged from the dumpster
is a good starting point, since failures
are not costly.

Belts are the most common me-
chanical parts that fail. You can find
them in old analogue consumer enter-
tainment devices, such as cassette and
record players. Belts are also used in
washing machines and cars. In four-
stroke engines, for example, the valve
timing is managed by the camshaft.
It needs to be synchronised with the
crankshaft and, possibly, other auxil-
iary equipment such as the oil pump.

The belts will unavoidably loosen and
replacing them is a regular job for ser-
vice workshops.

Planned obsolescence
The international company DuPont
very nearly went bankrupt when it in-
troduced Nylon, one of its best-selling
products. Nylon tights were advertised
as durable, and their sales were strong.
However, sales were suffering due to a
lack of continuity. DuPont solved the
problem by making the material weak-
er. This created an entirely new indus-
trial discipline: planned obsolescence
and lifetime estimates.

This practice is often justified by
stating that the funds received from
the sales of new products are spent
on further development. The fact is,
however, that international investment
bankers receive the largest share of the
profits. A few decades into planned
obsolescence, we now face a mountain
of computers, cameras, digital receiv-
ers and routers that are only a couple of
years old, as well as LCD screens that
are ”too small”.

You can easily scavenge piles of usable DDR2
memory modules from discarded computers.

A selection of expansion cards. In the fore-
ground, a laptop graphics card (HD3650) and
a desktop adapter for the PCI-E-bus found on
laptops; Wi-Fi adapters in the background.

A server farm made of salvaged hardware. Yesterday’s powerful PCs work well as a team. The
workstation has a RAID disk server connected over eSATA.

49

The environmental effects
of electronic waste
Industrialisation and the birth of mass
production gave us a vast amount of
wonderful items. However, the man-
ufacturing processes behind them will
continue to affect the environment for
much longer than the service life of the
items. New manufacturing methods
have reduced the need for raw mate-
rials and the environmental burden
caused by manufacturing, but at the
same time, the service life of home
appliances, for example, has fallen dra-
matically.

Producing new products requires
a lot of work and several different
phases. It includes everything from
the extraction of raw materials to the
manufacturing, marketing and sales of
the end product. The problems created
by mass production are relatively new.
Only a few decades ago, most house-
hold waste was non-toxic and bio-de-
gradable. At present, future genera-
tions face resource scarcity and severe

environmental problems as a result of
our use of resources.

Waste electrical and electronic
equipment contains several compo-
nents that can be recycled for raw ma-
terials. Some components can even be
reused, and the utilisation of electron-
ic waste is a growing field of industry.
Separating precious metals from elec-
tronic waste, for example, requires us-
ing strong chemicals and is not feasible
in a domestic environment. However,
on an industrial scale, it is economical-
ly and ecologically more feasible than
extracting new precious metals.

Technology can be built to last, but
it is rarely profitable from a financial
point of view. This is an enormous
challenge in the field of larger and
more expensive equipment, such as
cars. Manufacturing a new car creates
more pollution than driving an old one
until the end of its useful service life.
This makes it more ecological to ser-
vice your car and keep it running for
as long as possible. However, our con-

sumption preferences are largely not
rational and they are easily guided by
marketing.

The future
The amount of waste electronic
equipment is increasing. The prices of
new products have fallen and service
workshops receive less work. Piles
of resources are taken to the landfill.
A step motor from an old scanner
or printer could be used in a hobby-
ist-built 3D printer. A hi-fi amplifier
from the 1980s is proof that compo-
nents can last for a long time. It still
has sufficient sound quality and out-
put power for today’s applications.
Switching to a new digital standard
would only require replacing a small

microchip and interface, but device
manufacturers prefer to market and
sell an entirely new device. This uses a
lot of raw materials and energy.

Going forward, we will need to rely
on heavily standardised modular tech-
nology where accessories are designed
in a manner where the resources need-
ed for updating and servicing them are
minimised. In the future, a new model
of amplifier may be a user-installable
module that includes new interfaces
and codecs. New materials are in de-
velopment that allow for constructing
edible batteries and displays.

The future may be bright, but it re-
quires that we change our attitude in
terms of waste electronic equipment.
We must not dump our equipment
on third world countries after a short
period of use. Waste electronic equip-
ment is a source of resources that must
be utilised. 3D printing and milling
offer enormous potential for manufac-
turing spare parts. I recommend that
you learn to fix, mod and hack your
own devices!

MacBook Pro version 1.1 from 2006 and version 2.2. The latter has a 3-gigabyte memory limit.

Digging up dinosaurs
Story by Mikko Heinonen

A s Albert writes above, you can
find usable and fairly modern
PC hardware among waste

electronic equipment. But there are
more treasures to be found, and some
of them are even classic: I have sal-
vaged several old game consoles, pro-
cessors, memory chips and even classic
home computers, such as an Apple II.

Computers from the MS-DOS era
are a particularly endangered species,
since they are no longer in active use
but have not yet been revived by the
retro computing community. Never-
theless, they can still offer lots of fun.
For example, you can create a nice ret-
ro workstation by replacing the hard
drive with a CF card that is too small
for your photos. You can then use
this PC to watch old DOS demos or
even play networked Doom with your

friends. The Internet is full of legal
downloads of older games.

For once, you can also be really picky
and only accept the best components
for your setup. How about a top-of-
the-line Pentium MMX with L2 cache,
a motherboard loaded with RAM, a
Tseng Labs graphics card and a Gravis
Ultrasound? All of this could be had
for a few coins from the waste contain-
er of a large company and the bargain
bin at a thrift store. 

2016.1E50

Building a computer
in the past
Imagine that you are thrown back in time by hundreds of years. Somehow, you manage to make your
life comfortable, but it is missing a true purpose – a computer, that is. Could you build one?
Story by Ville-Matias Heikkilä
Images by Ville-Matias Heikkilä, Oona Räisänen, Nasu Viljanmaa, Wikimedia Commons (Klaus Nahr,
Bruno Barral)

Far out

M odern comput-
ers are electrical
devices based on
microchips. It
would be too easy

to assume that a computer cannot be
built without first developing an enor-
mous amount of different tools and
techniques for the manufacture of dif-
ferent electronic components. Luckily,
the outlook for a time traveller is not
as gloomy. You can build a program-
mable computer by using more coarse
techniques that have been used for sev-
eral millennia already.

In the 1930s, the German engineer
Konrad Zuse built a programmable
calculator in his parents’ living room.
It is currently known as the Z1 com-
puter. It read instructions off punched
tape and followed them in order to
perform basic arithmetic operations
on 22-bit floating point numbers.
You could save numbers in the work
memory, read them from user input
and print them out. In other words,
it met all the criteria for a computer.
From a time traveller’s point of view,
the Z1 was interesting because it was

completely mechanical: the only elec-
trical part was a motor that rotated the
mechanism.

Zuse built the mechanism for the
Z1 using 30,000 thin metal strips that
he cut with a jigsaw. Combining strips
of different sizes allowed him to build
logic gates whose parts moved be-
tween two possible positions, depend-
ing on the positions of the other parts.
Even the most complex binary logic
is based on a few different logic gates,
which means that, in principle, moving
metal plates could be used to create a
mechanical version of any computer.

Even the ancient Greeks were capa-
ble of constructing precision mechan-
ics. The Antikythera mechanism that
modelled the movements of the celes-
tial bodies was based on thirty bronze
gears, the largest of which had 223
teeth. The Greeks also built automatic
theatres, self-opening doors, coin-op-
erated machines, steam engines and
other nearly magical devices. Hero of
Alexandria, who lived during the first
century, was particularly skilled at
creating useless but highly innovative
gadgets. It seems clear that the Greeks

could have constructed the Z1 – pro-
vided that they had the blueprints. De-
signing the machine, however, would
not have been possible without sym-
bolic algebra and the binary system
that did not arrive in Europe before the
second millennium.

Gears or levers?
Binary logic built with metal strips is
only one of many techniques that a
time traveller can use in building their
computer. Rotating gears and Leib-
niz wheels are also viable alternatives,
since most mechanical calculators are
based on them. Gottfried Leibniz de-
veloped the Leibniz wheel (stepped
drum) in the 17th century for his own
calculator.

The Analytical Engine, developed
by the English mathematician Charles
Babbage in the 1830s, would have
used gears. If it had been completed,
it would have been the world’s first
programmable computer. It could the-
oretically serve as a model for a time
traveller’s computer, as long as you did
not copy its structure too exactly. The
project suffered from megalomania:

51

the memory, for example, was sup-
posed to contain one thousand 40-dig-
it decimals, while Zuse made do with
64 memory locations.

Although the Analytical Engine
was never completed, Babbage’s hum-
bler idea, the Difference Engine, was
turned into working devices already in
the 19th century. The Swede Per Geor
Scheutz built a wooden prototype of
his difference engine in 1843, and was
later able to sell two metal versions.
However, the difference engines are
not programmable computers. They
are only suited for producing func-
tion tables. Another predecessor of the
computer from the same century was
the punched card machine that was
used in the US census in 1890.

Ropes, rolling marbles or pneumat-
ics are also viable physical foundations
for a computer. If the time traveller
decides to invent electricity, they can
build relays, electron tubes and maybe
even semiconductor diodes and tran-
sistors. An optical computer, however,
will most likely require a laser, so it is
probably not a feasible endeavour.

Those who want to practise building a
mechanical computer before travelling
back in time can do so by using Lego
bricks, for example. The Antikythera
mechanism and Babbage’s Difference

The rebuilt mechanism from the Z1. Deutsches Technikmuseum, Berlin.

A small part of the Analytical Engine. Science Museum, London.

2016.1E52

Engine have been built with Legos, and
the British Lego hobbyist ”Random
Wraith” has also used them to build
logic gates. But no one has yet built an
entire programmable computer.

From simple to complex
Regardless of the physical and theoret-
ical foundation of your computer, you
should always build it one abstraction
layer at a time. During the first stage,
you develop a sufficient selection of
simple and reliable primary elements,
such as logic gates. In the second stage,
these primary elements are used to
form more complex entities, such as
memory and addition elements. By
increasing the level of complexity one
level at a time, we will finally arrive at
a machine that can run a program, af-
ter which any higher abstraction levels
can be implemented in software.

The simplest logic gate is the NOT
gate that takes in one bit (0 or 1) and
outputs the opposite bit (1 or 0). Figure
1 explains the operation of the NOT
gate on the Zuse Z1. The input bit is
determined by whether the topmost
plate is in the upper or lower position.
The position of the left plate indicates
the output bit. The right plate is used
for synchronisation, without which the
gate will not operate. Mechanical parts
require careful synchronisation in or-
der to work properly, so you should
not try to optimise the process by re-
moving the sync bit.

Another gate used by Zuse was OR
(Figure 2) that takes in two bits. It out-
puts zero if both input bits were zero,
otherwise, it outputs one. In principle,
binary logic can be built with only one
gate type (NAND or NOR), but you
can reduce the size by adding others.
The XOR gate is very useful for addi-
tion, for example.

To add together two arbitrary binary
numbers, we need an element known
as an adder (Figure 3) that takes in
three bits (A, B and C) and outputs
their sum in two bits (D and E). The
upper bit of the sum (D) can be routed
to the input of another adder, which al-
lows eight parallel adders to be chained
together in order to form an addition
circuit for two 8-bit numbers (Figure
4).

A long adder chain is not absolute-
ly necessary, however. For example,
the first Finnish computer ESKO per-
formed additions one bit at a time,
using a single adder. The smallest and
slowest model of the PDP-8 minicom-
puter also did this. However, Zuse was
not as frugal even with the Z1.

Instead of moving plates, you can
also use rotating shafts and gears for
the basic structure. This may even be
a better option in some cases. Accord-
ing to Random Wraith’s observations,
the preferred elementary operations
for rotation-based logic are the sum,
difference, halving and absolute value
of the number of rotations. These an-
alogue operations can be fairly simply
used to build digital circuits – both
logic gates and binary adders.

Memory and buffers
In addition to the calculation elements,
a working computer requires stor-
age space for the results. The Z1 had
two registers for this purpose, the R1
and R2, and RAM memory with 64
locations. Calculations were always
performed between two registers and
the result was saved in either of them.
There were dedicated instructions for
handling memory. They copied data
from the registers into the memory
and back.

In the Z1’s RAM memory, each bit
corresponded to a small metal strip
whose position was altered. The strips
were placed in a grid that was sur-
rounded by the selector mechanism.
The selector’s first three input bits se-

lected one of the eight rows on a level
and the following three bits selected
one of the eight columns. This allowed
reads and writes to be targeted at one
strip at a time. The memory was con-
structed by using 22 of these bit levels
that were operated simultaneously.

Modern computers run their soft-
ware from RAM, but the Z1 read its in-
structions off of punched tape, which
was a fairly popular means of storage
in early computing. However, punched
tape and punched cards have been
used for controlling different mechan-
ical devices since the 18th century.
Barrel organs and music boxes also use
a type of mechanical drum memory. It
could be used in computing to save a
microprogram that performs the com-
puter’s actual instruction set.

Instruction set
The Z1’s instruction set included
arithmetic instructions, memory han-
dling instructions and number input
and output commands. The problem
was the lack of jump instructions.
Loops had to be performed by either
writing them out or by taping the be-
ginning and end of the tape together.
Therefore, you should not model the
instruction set on your computer after
the Z1, since there are more advanced
options.Figure 2: OR gate on the Z1.

input (X1) input (X2)

clock

ou
tp

ut
1

0

1
0

1 0 1 0

Figure 1: NOT gate on the Z1.

input (X)

clock

ou
tp

ut
1

0

1 0 1 0

Figure 3: An adder that calculates the sum of
two binary numbers.

Figure 4: An adder chain that calculates the
sum of two 8-bit numbers.

SUMMAND A

C

C

+ + + + + + + +

SUMMAND B

SUM

53

In principle, a general-purpose com-
puter can be astonishingly simple.
Many cellular automatons are Turing
complete, for example. In theory, a de-
vice that winds a memory tape around
endlessly and changes the state of each
memory location based on the states of
the previous cells could be considered
a computer. In practice, and especially
in mechanical form, such a machine
would be extremely slow and labori-
ous and would only provide theoreti-
cal pleasure to even the most hardened
idealist.

Many hobbyists who have built com-
puters from their elementary compo-
nents have used the instruction set of
the PDP-8 minicomputer due to its
simplicity. This could make it a good
starting point for a mechanical com-
puter. Other ideals could be the Data
General Nova, TMS1000, RCA 1802
and MOS 6502. Those who desire a
higher level of elegance might develop a
Forth-style stack-based instruction set.

Should I invent
electricity first?
Mechanical computers have their lim-
itations. Even if you could make one
completely reliable, it will be hopeless-
ly slow for many interesting tasks. The
fastest electromechanical computers
have reached approximately ten ad-
ditions per second, which would also
be the upper limit for fully mechanical
ones. Even using electron tubes can in-
crease the performance by a factor of
several thousand.

Inventing electricity may also prove
otherwise beneficial for a time trav-
eller. Electricity allows for building a
telegraph and a radio, which may give
warmongering ancient rulers the upper
hand against their neighbours. Once
the time traveller has sold enough
communications technology to be re-
garded with favour by the rulers, they
will also be in an excellent position to
start constructing a computer.

The first electrical device that a time
traveller will want to build is the bat-
tery. Chances are that they are carrying
a mobile phone, and its backlight alone
will make it an object of immense
magical power in the eyes of the people
of ancient times. Charging it is recom-
mended in order to prolong the bene-
fits of the magic power. The electrolyte
can be sauerkraut, rowan berries, citrus

fruit or vinegar, for example. You also
need two different metals for the an-
ode and cathode. Recruiting a skilled
blacksmith for building the conductors
and connectors is recommended.

The skills required for constructing
generators, transformers and relays
have been around for centuries, but
our understanding of physics was in-
sufficient and did not allow for their
invention before the 19th century. An
electron tube can be built with tradi-
tional artisan skills as regards the glass,
metal and insulation, but pulling a vac-
uum inside the tube may prove to be
a problem. A crude form of a vacuum
pump was already known in ancient
times, but a time traveller who wants
to build tube computers will most like-
ly need to develop a better method
for this. Those interested in semicon-
ductors will most likely need to spend
decades developing the necessary pro-
cesses before the construction of the
computer can begin.

How to justify my creation?
It appears that a time traveller with
sufficient skill and good fortune could
build a computer in the Middle Ages
or even earlier. But how would the rest
of the world view such a gadget?

The boundary between technolo-
gy and magic was very unclear before
the Enlightenment. In ancient Greece,
complex machines were mostly seen in
temples that competed with each other
and required a steady supply of ”mira-
cles”. In the 16th century, the Italian sci-
entist Giambattista della Porta wrote in
his book ”Magiae Naturalis” that real
magic is based on natural sciences and
has nothing to do with the supernat-
ural. In other words, a time traveller
should prepare for the fact that science
and technology will be categorised as
witchcraft by the majority of the pop-
ulation.

There is no point in trying to ration-
alise the importance of computing,
either. After all, even most modern
people do not understand the ideas of
data processing, since computers are
only collections of apps to them. The
fact that the industry pioneers have
struggled with finding approval for
their ideas is also indicative of how dif-
ficult the concept is. After Leibniz built
a working calculator, nobody resumed
his work for a hundred years. Bab-

bage’s idea on the automation of brain-
work was not understood, even though
the automation of manual labour was
already under way. Even in the 1970s,
the directors of several computer com-
panies did not believe that there would
be a market for home computers.

In other words, the time traveller is
not likely to encounter many people to
whom they could explain the idea of
a computer, even with great effort. To
prevent the computer from becoming
only a secret personal project, the time
traveller should try to shape the culture
in a more receptive direction. Becom-
ing a philosopher might be a feasible
solution. The formal systems could be
injected with references to ”thinking
machines” and data processing theory.
If the era is very narrow-minded, how-
ever, the most radical thoughts should
only be expressed at meetings with se-
cret societies.

If the time traveller is, instead,
thrown into the future, where human-
ity has suffered a major technological
setback, this scenario has a major ben-
efit. If people still exist, they will have
at least some form of lore related to
modern technology, which provides
better prerequisites for understanding
it. Therefore, a tribal warrior from the
Neo Stone Age may well be more re-
ceptive to the idea of a computer than
an ancient philosopher.

The history of computing is often
told from an engineer’s point of view:
from mechanical parts to electron
tubes to transistors and even dens-
er microchips. However, our little
thought exercise here shows that the
development of culture has been at
least as important. Humanity has had
to undergo several changes in thinking
before the idea of a computer could
even come to pass. In the Middle Ages,
a computer would have been complete-
ly anachronistic and incomprehensible
– regardless of whether it had been
made of wood or future components.

We can also reverse our scenario: if
a time traveller from the far future ar-
rived in our time, how would they view
the possibilities offered by 2010s tech-
nology? Would they be able to use it
to create something that is completely
mind shattering, or would they prefer
to advance, say, nanotechnology and
quantum computing before building
their magnificent invention? 

2016.1E54

E arlier, knowledge of ma-
chine code was an almost
required skill for game
and demo programmers,
for example, but nowa-

days it is mostly generated by high-lev-
el compilers. Being able to read ma-
chine code is still useful, nevertheless.
You can evaluate the work of the com-
piler and examine and modify pro-
grams without their source code. Pos-
sessing this skill makes the computer
and its software much more tangible.
Machine code is still an important tool
for people working with vintage hard-
ware, microcontrollers and low-level
security vulnerabilities.

Machines speak
many languages
Not all machines can understand the
same machine code. PC processors,

for example, use x86 machine code
and mobile devices use ARM machine
code. A single machine code is also
referred to as an instruction set or ar-
chitecture.

For the sake of clarity, this article
focuses on four instruction sets from
the annals of computing history: 6502,
x86, 68K and ARM. Since the design
philosophies behind these instruction
sets are also quite different, they will
also provide an overall picture of the
types of machine code that exist.

MOS Technology’s 6502 is one of
the most popular 8-bit processors. The
8-bit computers from Apple, Atari and
Commodore and the Nintendo NES,
for example, all use it or one of its
clones. The 6502’s traditional competi-
tor was the Zilog Z80, based on the In-
tel 8080. AVR and PIC are newer 8-bit
instruction sets that are mostly used in

Code

Machine code:
The gateway to the computer’s soul
Computer hobbyists have always considered machine code to be something extraordinary –
after all, it is the closest a programmer can get to the actual hardware. Although machine code
is no longer the gateway to programming magic, understanding it will help in comprehending
technology.
Story by Ville-Matias Heikkilä
Images by Mitol Meerna, Ville Matias Heikkilä, Visual6502.org, AMD

Instructions from different machine code dia-
lects, broken down to bits.

http://Visual6502.org

55

embedded systems.
The Intel x86 was made famous by

the IBM PC compatibles. The original
instruction set was 16-bit, but it has
later been radically expanded and re-
newed – first to 32-bit for the 386 pro-
cessor, then to 64-bit at the initiative of
AMD. Despite the enhancements, the
different historical sediments are still
clearly visible in x86 machine code.

The Motorola MC68000 was used
by most computers that competed
with the IBM PC until the early 1990s:
the Amiga, Atari ST and Macintosh as
well as most UNIX workstations. It is
based on the instruction sets of larger
1970s computers and is a pure CISC
(Complex Instruction Set Computer)
by design.

ARM is currently the most popular
instruction set. It dominates the mo-
bile platforms, in particular, but may
even replace the x86. The instruction
set was originally used on the Archi-
medes home computer, and it became
popular since it offered a lot of power
with a low amount of silicon. ARM is a
RISC (Reduced Instruction Set Com-
puter). Other RISCs include MIPS,
SPARC, PowerPC and AVR, for exam-
ple.

Following instructions
Machine code instructions are fairly
dense strings of ones and zeros. The
instruction presented on page 54 per-
forms the same task in several different
machine code variants. Each instruc-
tion adds the number 3 to one of the
processor’s internal registers, but the
bit width varies, among other things:
the 6502’s adc uses 8-bit numbers,

which means that the largest sum can
amount to a few hundred, while the
ARM can count into the billions with
its 32-bit wide calculations. The num-
ber of bits in a processor or instruction
set usually refers to the maximum bit
width of basic calculations.

Strings of ones and zeros are diffi-
cult to read for humans. This is why
people usually process machine code
in symbolic form, known as assembly
language. The assembly representation
can also be used to guess what the in-
struction does even if the instruction
set is not known; for example, ad(d)
refers to addition. The same machine
code may have several different as-
sembly language syntaxes that are used
by different assembly compilers or as-
semblers – such as the Intel and AT&T
syntaxes for the x86.

A machine code instruction usu-
ally consists of an opcode (operation
code), the addressing mode and the
operands. The opcode is the ”verb”
and it corresponds to the first word
in an assembly statement, also known
as a mnemonic; add, for example. The
operands are the ”nouns” that follow
it: registers, numbers and memory
addresses. Addressing modes can be

compared to the forms of declension in
human languages. They indicate how
the operand part should be interpret-
ed – whether it is a memory address
or a number – and provide additional
attributes; for example, the suffix .b,
.w or .l on a 68K instruction indicates
whether the operation is performed in
8, 16 or 32 bits.

Registers rotate data
In most machine code dialects, the ma-
jor part of the data processing occurs
inside registers. They can be viewed as
processor-internal fixed variables. The
number of registers, their width and
their manner of use differ substantially
from one instruction set to another.

The 6502 has a very small register
set and each register is tied to specific
tasks. Most calculations will need to be
performed in the accumulator regis-
ter, A. The index registers X and Y are
mostly suited for memory addressing
and loop counting, which A cannot
perform. In addition to these, the 6502
only has the stack pointer S, the status
register P and the instruction pointer
PC that indicates the memory address
for the next instruction. PC is the only
16-bit register; the others are 8-bit. The
limited register space is supplemented
by the ”zero page”, the first 256 bytes of
the memory, and many types of mem-
ory addressing can only be performed
via the zero page.

The ARM and other RISCs, for their
part, have a highly symmetrical and
general-purpose register set. Theo-
retically, any register can be used for
any purpose. The only exceptions are
register R15, which is the instruction

The oldest parts of the register set for the current 64-bit x86 originate from the 1970s.

2016.1E56

pointer, and a separate status register.
The basic ARM has 16 32-bit registers,
but most other RISCs have 32 or more
basic registers.

The registers on the x86 were origi-
nally specialised; for example, only the
registers BX, SI, DI and BP could be
used for memory addressing. The 32-
bit update removed some of these re-
strictions. Nevertheless, even the cur-
rent 64-bit operation mode has some
instructions that are bound to specific
registers: for example, the single-byte
command stosb saves the contents of
the 8-bit AL (accumulator low) regis-
ter to the memory location where the
original DI (destination index) regis-
ter’s 64-bit extension RDI is pointing
at.

The basic register set of the 68k is di-
vided into eight data and address reg-
isters D0–D7 and A0–A7, of which A7
is used as a stack pointer. It also has a
separate status register, CCR, and the
instruction pointer, PC. The address
registers were originally 24-bit, but

they were expanded to 32 bits in the
68020. All registers can be used for
calculations in a fairly general manner,
but memory addressing must use the
address registers.

Addressing modes modify
the instructions
The simplest machine code instruc-
tions have no operands; this means
that their operation is tied to specific
registers. The instruction stosb on the
x86 mentioned above is an example of
this implicit form of addressing. Other
examples include instructions for re-
turning from a subroutine (ret, rts)
and the instructions for setting and
clearing flags (sec, clc).

The typical number of operands in
an instruction varies from one ma-
chine code to another. On the 6502,
most instructions have one operand.
This operand is usually a memory ad-
dress, in which case the calculation oc-
curs between the accumulator register
and the memory location. The x86 and
68k have two operands: a source and

AND BIC

OR XOR
(EOR)

NOT

Bit operations from the instruction sets dis-
cussed in this article. BIC is used by ARM.

SHL, (SAL, ASL, LSL)

ROL

Operation of the bit shift instructions. Many
instruction sets have different names for ROR
and ROL that use the carry digit, such as RCR
and RCL.

Intel X86 68k AT&T X86

Operand order add destination,source add.w source,destination addw source,destination

Memory addressing add ax,[1234] add.w 1234,destination addw 1234,%ax

Immediate add ax,1234 add.w #1234,destination addw $1234,%ax

Indexed address [ebx+esi+8] 8(a0,d1.L) 8(%ebx,%esi)

Hexadecimal 1234h $1234 0x1234

Location of the instruction jmp $ jmp pc jmp .

Data byte db 123 ds.b 123 .byte 123

Assembly syntaxes are usually quite similar, but they may have some confusing differences.
Here are a few examples.

ROR

SHR (LSR)

SAR, ASR
8× 4× 2× 1× Unsigned Signed

0 0 0 0 0 +0

0 0 0 1 1 +1

0 0 1 0 2 +2

0 0 1 1 3 +3

0 1 0 0 4 +4

0 1 0 1 5 +5

0 1 1 0 6 +6

0 1 1 1 7 +7

1 0 0 0 8 -8

1 0 0 1 9 -7

1 0 1 0 10 -6

1 0 1 1 11 -5

1 1 0 0 12 -4

1 1 0 1 13 -3

1 1 1 0 14 -2

1 1 1 1 15 -1

Four-bit integers interpreted as unsigned and
signed, using two's complement.

clc
lda $FE
adc #$34
sta $FE
lda $FF
adc #$12
sta $FF

asl $FE
rol $FF
asl $FE
rol $FF
asl $FE
rol $FF

Handling 16-bit numbers with the 8-bit 6502.
The example on the left adds the hexadeci-
mal number $1234 to the value of the num-
ber saved at memory locations $FE and $FF,
the one on the right multiplies it by eight by
shifting the bits.

lp: cmp r0,r1
 subgt r0,r0,r1
 suble r1,r1,r0
 bne lp

A loop that calculates the largest common
denominator on an ARM by using conditional
execution. An Euclidean algorithm subtracts
the smaller number from the larger one until
the numbers are equal.

57

destination operand for each instruc-
tion. A typical ARM instruction has
three operands: two sources and one
destination. Forth-style stack-based
machine codes can be considered ze-
ro-operand variants.

For most processors, the main part
of machine consists of operations be-
tween registers. However, immediates
or different memory references can
also be used as operands in addition to
registers.

There are often limits to combin-
ing operands: on the x86, one of the
operands must always be a register
or an immediate; there is no direct
command for ”add value of memory
location 2 to value of memory loca-
tion 1”. However, memory references
can be very complex in accordance
with the CISC philosophy. For ex-
ample, the 32-bit x86 instruction mov
eax,[ebx+ecx*4+1256] forms a
memory address by adding together
a constant and two registers, of which
ECX has its bits shifted two steps to the
left.

In ARM-type RISCs, most instruc-
tions can only receive registers or
immediates as their operands. Mem-
ory handling must be arranged by
means of dedicated load and store

The internals of a 6502 processor. The lower half is dominated by an
8-band arithmetic and register unit, the top part has a microcode table
that converts the instructions into execution steps. Between them you
will find the rest of the operational logic, such as branch and flag
handling.

The internals of an AMD Phenom X4 processor. Most of the surface
area of the four symmetrically positioned 64-bit cores is taken up by
cache memory and instruction decoding and sequence logic.

The internals of a Motorola 68000. Can you find the arithmetic and register unit?

lp: movem (a0)+,(d1-d7)
 movem (d1-d7),-(a1)
 dbne d0,lp

lp: subcc r2,r2,#1
 ldmia r0,(r3-r13)
 stmdb r1,(r3-r13)
 bne lp

A loop that copies the contents of a memory area in reverse order to another memory area by
using the register set instructions. 68k on the left, ARM on the right.

2016.1E58

instructions (ld, st, mov) that do
not perform calculations.

Memory handling on the ARM and
68k is improved by addressing types
where the contents of the register are
incremented or decremented while
the register is used for memory ad-
dressing. This is handy when scanning
memory areas.

Instead of using direct addresses, it
is often preferable to refer to memory
locations by using the location of the
instruction as a fixed point. The con-
ditional jump instructions on the 6502
and x86 can be used to jump forward
or backward by a maximum of 128
bytes; this means that the instruction
only takes up two bytes. Program code
that does not use direct memory ad-
dresses is called position-independent,
since it can be executed as is from any
location in memory.

Computers like to compute
Most processors use binary integers
by default. The 6502, 68k and x86 also
offer Binary Coded Decimals (BCD)
where four bits correspond to each of
the decimals 0–9. Floating point num-
bers, for their part, are processed with
separate floating point units that have
their own registers and instructions.

Negative integers are nearly always
expressed as two’s complements, where
the sign is changed by flipping the bits
around and adding one to the result.
Therefore, a number that contains only
ones has a value of -1, like a tape coun-
ter that goes from 000 to 999 when re-
wound. The same bit string can be in-
terpreted as either signed or unsigned,
and the differences become especially
apparent during multiplication, divi-
sion and comparison.

All machine codes offer addition
and subtraction for integers (add,
sub). The 8-bit machines usually lack
multiplication and division (mul, div),
which means that they must be im-
plemented by means of subroutines
or tables. RISCs usually only contain
multiplication.

Bit operations include both logical
bit operations (and, or, eor/xor) and
bit shifts that come in many forms. The
functionality of the bit operations is
presented in the enclosed diagrams.
The difference between an ”arithme-
tic” and ”logical” bit shifts is that in
an arithmetic shift, the number is as-

sumed to be signed and its top bit is
kept in place.

One of the peculiarities of ARM is
that, while it has no instructions for
bit shifts, a bit shift can be combined
with the second source operand of any
arithmetic operation. For example,
add r0,r1,r2 asr r3 corresponds
to the C expression r0=r1+(r2>>r3).

Sometimes, the result of the opera-
tion will not fit in the destination reg-
ister. For example, the sum of two 8-bit
numbers has 9 bits. The topmost bit is
usually recorded in the carry flag (C).
The carry digit is used for chaining the
calculations: the instructions adc/addx
and sbc/sbb/subx are additions and
substractions that consider the carry
digit from the previous calculation.

What ifs
A conditional jump is the typical ma-
chine code equivalent to the if clause
in higher-level languages. For example,
the instruction beq, je or jz will jump
to the memory address provided as the
operand if the result of the previous
arithmetic operation was zero. Before
the jump, it is common to use a com-

parison instruction, cmp/cp, which
performs the subtraction without sav-
ing the result. The jump instructions
are usually named from the point of
view of comparison; if the result of the
subtraction is zero, the numbers are
equal (e/eq).

The information concerning the re-
sult is usually saved in status register
bits that are known as flags. The carry
flag mentioned above is one of them.
Conditional jump instructions exam-
ine the status of the flags and jump if a
condition is met. Typical flags include:
•  The zero flag (Z) that indicates

whether the result of a calculation
is zero.

•  The sign flag (S) or negative flag
(N) that corresponds to the top bit
of a result that fits in a register. For
negative numbers, this is 1.

•  The carry flag (C) that corresponds
to the bit carried over from an arith-
metic operation.

•  The overflow flag (O or V) is set
when the extension of the result
does not fit in the carry flag.

On the 6502, x86 and 68k, each cal-
culation instruction affects the flags.

EX, EXG, XCHG exchange Exchange the contents of the registers.

LD load Load from memory.

MOV, MOVE move Copy data from register or memory to register or memory.

POP, PL pop, pull Pick the topmost value in the stack.

PUSH, PH push Add to the top of the stack.

ST store Store in memory

ADC, ADDX add with carry/extend Add with carry digit.

ADD add Add.

DEC decrement Decrement by one.

DIV divide Divide.

INC increment Increment by one.

MUL multiply Multiply.

NEG negate Switch the sign.

SBB, SBC, SUBX subtract with borrow/carry/extend Subtract with carry digit.

SUB subtract Subtract.

AND and AND operation by bit.

ASL, SAL arithmetic shift left Shift bits to the left.

ASR, LSR, SHR [arithmetic/logical] shift right Shift bits to the right, extending the topmost bit.

EOR, XOR exclusive or Exclusive OR by bit.

LSL, SHL [logical] shift left Shift bits to the right, extending with zero.

NOT not Reverse the bits.

OR or OR operation by bit.

ROL, RL, RCL rotate [with carry] left Rotate bits counterclockwise [through the C flag].

ROR, RR, RCR rotate [with carry] right Rotate bits clockwise [through the C flag].

Data transfer.

Basic arithmetic operations.

Bit operations.

59

On the ARM, the effect on flags is ex-
pressed for each instruction with the
suffix cc (condition code). ARM does
not always require conditional jumps,
since the execution of any instruction
can be made conditional. For example,
the instruction addeq operates like
add, but it is only executed if the zero
flag is set.

Stacking up other stuff
A normal unconditional jump instruc-
tion may be called jmp, bra or b, while
a subroutine jump is called jsr, bsr,
call or bl. Subroutine calls store the
value of the instruction pointer. This
allows the execution to resume from
the place where the subroutine was
called. The return instruction is typi-
cally called ret or rts.

Older instruction sets typically save
the return address in a memory area
known as the stack. Instead, RISCs use
a register that the subroutine stacks by
itself if it aims to call other subroutines.

The linking jump instruction for ARM
is called bl (branch and link). The link
register is usually R14 and the instruc-
tion pointer is R15, so the instruction
for returning from the subroutine is
mov r15,r14.

The stack stores other things in ad-
dition to return addresses. Since the
subroutines use the same registers as
the main program, the values of the
register values will commonly need to
be stored in the stack. Stack space can
also be reserved for local variables that
do not fit inside the registers. The x86
and 6502 have push and pop/pull in-
structions that are bound to the stack
pointer, whereas the ARM and 68k use
regular memory handling instructions
for stack handling. The ARM and 68k
also have instructions for saving or
loading a desired register set at once.

Calling conventions are used to keep
larger programs in check. They define
how parameters and return values are
relayed between the main program

and subroutine, and which registers
the subroutine is allowed to modify.

The world is memory
From the processor’s point of view, the
entire outside world consists of mem-
ory. Memory is usually divided into
memory cells that are the size of an
8-bit byte and have their own numeric
address.

There are two main methods for
storing numbers that consist of sev-
eral bytes. The 68k uses big-endian
byte order, which means that the most
significant bits are stored in the first
byte. The 6502 and x86 use little-endi-
an byte order and store the lower bits
first. ARM can operate with either byte
order; little-endian is more common,
however.

In simpler devices, the physical
RAM, ROM and control chips have
fixed areas within the memory space.
In a VIC-20 program, for example,
writing to address $900F will always
affect the colour register of the video
chip. More complex hardware allows
for changing the memory structure
visible to the program.

If the machine has more memory
than the address space can hold, such
as over 64 kilobytes in a 6502 based
machine, banking is required. Banking
means selecting which parts of the to-
tal memory are visible in specific areas
of the memory space. Modern operat-
ing systems modify the visible struc-
ture of the memory in order to prevent
different processes from accessing
unauthorised memory areas. At the
same time, the code is prevented from
modifying the state of the processor by
switching from supervisor mode to user
mode during its execution.

Virtual memory means all memory
visible to the program needs to cor-
respond to physical memory. If the
address space is large enough, the pro-
gram may request the operating system
to extend the virtual memory to the
entire contents of the hard drive, for
example. When the program tries to
access a memory location that is not in
physical memory, this causes an excep-
tion that the operating system handles
by loading the desired location from
the hard drive into physical memory.
From the point of view of the program,
the entire contents of the drive are per-
manently accessible in memory.

BIT, BT, BTST, TEST bit test Test individual bits (AND without saving the result).

CLf clear flag Clear a flag (e.g. C).

CMP, CP compare Compare (subtract without saving the result).

Scc, SETcc set on condition Set the value of the register to the truth value (e.g. NE).

SEf, STf set flag Set a flag (e.g. C).

Bcc, Jcc branch/jump on condition Jump if the condition (e.g. NE) is met.

BL, BAL branch and link Branch to subroutine, place return address in the link register.

DBcc, LOOP decrement and branch, loop Decrement the value of the register and branch if the condi-
tion is met.

JMP, JP, B, BRA jump/branch Branch to memory address.

JSR, JR, BSR jump/branch to subroutine Branch to subroutine, place return address in the stack.

RET, RTS return from subroutine Return from the subroutine to the main routine.

SWI, INT, TRAP,
BRK, SYSCALL

software interrupt, trap,
break, system call

Perform a software interrupt.

HLT halt Halt the processor (wait for interrupt).

NOP no operation Do nothing.

CC, NC no/clear carry Carry digit = 0

CS, C carry set Carry digit = 1

EQ, E, Z equal/zero Numbers equal (zero flag set)

GT, G greater [than] First value > second value

LT, L less [than] First value < second value

NE, NZ not equal/zero Numbers not equal (zero flag cleared)

NS, PL no sign, plus Result not negative (sign = 0)

S, MI sign, minus Result negative (sign = 1)

VC, NO no/clear overlow Overflow flag cleared.

VS, O overflow set Overflow flag set.

Comparison and flags.

Jump instructions.

Other instructions.

Conditions (as part of instructions).

2016.1E60

Memory speed is not a bottleneck for
1970s processors. On the 6502, for ex-
ample, memory-resident tables and un-
rolled loops should be used in code that
is critical in terms of speed, if you can
fit them in memory. For modern pro-
cessors, however, a calculation needs
to be really complex in order to bene-
fit from a pre-calculated table. Internal
caches and smart pipelines mean that
unrolling loops is more likely to slow
down the code than make it faster.

Controlling devices
Computer equipment includes auxil-
iary chips that have their own control
registers. On the 6502, 68k and ARM,
these registers are visible in the mem-
ory space. However, the x86 uses sepa-
rate I/O ports that are handled with the
in and out instructions.

Interruptions were designed to re-
lieve the processor from the burden
of continuously polling the states of
the different devices. A device can
send out an interrupt request (IRQ)
that causes the processor to stop what
it is doing and move to the interrupt
handling routine. In order to manage
routine tasks, most operating systems
execute a timer interrupt a few dozen
times per second.

In its simplest form, an interrupt
is no different than a subroutine call.
The start address for the subroutine is
fetched from a branch table according
to the interrupt type and number. In

modern operating systems, the inter-
rupt also switches the processor into
supervisor mode. Only an operating
system that is running in supervisor
mode can access external hardware,
and applications perform a non-mask-
able interrupt (NMI) when they require
assistance from the operating system.

Several instructions at once
The commonly used instruction sets
go back several decades, but processor
operation has changed significantly
during this time. Parallelism has been
increased, in particular.

Traditional CISC processors run
only one instruction at a time. The
execution of an instruction is divided
into several consecutive stages that are
coded in the processor’s internal mi-
crocode table. On the 6502, executing
an instruction consists of 2–8 stages,
whereas division on the 8086 takes up
over 100 clock cycles. On these proces-
sors, a programmer can calculate the
execution time for their code simply
by adding together the clock cycles re-
quired for the instructions and divid-
ing the result by the clock frequency.

One of the key ideas of RISC archi-
tectures is that the execution of simple
instructions may occur in parallel. The
original ARM processor on the Archi-
medes has a three-stage pipeline: the
processor saves the result from one
arithmetic operation into a register
while performing the next operation

and reading the following instruction
from memory.

Pipeline technology means that
jumps are relatively costly. Executing a
jump means discarding the execution
stages of the instructions that follow
it. There are several ways to prevent
this issue. Conditional execution, used
by ARM, is one of them: omitting one
or two instructions is less costly than
purging the entire pipeline. Branch pre-
diction is a more advanced technique;
the processor tries to guess whether the
jump will occur and loads instructions
into the pipeline accordingly. Specula-
tive execution, on the other hand, ex-
ecutes both options and discards the
effects of the one that did not occur.

Many processors have several paral-
lel pipelines, allowing them to execute
consecutive instructions in real time.
However, consecutive instructions
commonly depend on each other’s
results; this means that the program-
mer or processor should arrange the
instructions in a manner where con-
secutive instructions do not use the
same registers. In processor automa-
tion, these techniques are referred to
as out-of-order execution and register
renaming.

The x86 architecture has offered its
fair share of challenges for processor
designers. Since the 1990s, complex
x86 instructions have been broken
down into RISC style microinstruc-
tions that utilise the above techniques.

A 6502 example for the Commodore 64. The PRG file generated by the
ACME cross-assembler can be started directly in the VICE emulator,
for example.

A 16-bit x86 example for MS-DOS. NASM will compile the code and
create an executable COM file.

 !to "skrolli.prg",cbm
 *=$0801 ; Start address of the program.

; Obligatory BASIC portion: 10 SYS2061 + final zeroes:
!byte $0b,$08,$0a,$00,$9e,$32,$30,$36,$31,0,0,0

 ldx #0 ; Set counter (X) to zero.

loop0 txa ; Copy X to A in order to
 and #15 ; calculate X AND 15.
 tay ; Result to Y; then fetch
 lda msg,y ; a byte from address msg+Y.

 sta $0400,x ; Copy it to the each
 sta $0500,x ; 256-byte block of the
 sta $0600,x ; screen memory at the
 sta $0700,x ; offset X.

 inx ; Increment X.
 bne loop0 ; Repeat until rolls back to zero.

 rts ; Return to BASIC interpreter.

msg !scr "read skrolli!!! "

 bits 16 ; Nasm to 16-bit mode.
 org 0x100 ; COM programs start at 0x100.

 mov ax,0xb800 ; Start address of screen memory
 mov es,ax ; .. to the segment register ES.
 xor di,di ; Set Destination Index to zero.

 mov ah,14 ; High byte of AX is the color.

loop1 mov si,msg ; Source Index to start of text.
 mov cx,16 ; Set loop counter to 16.

loop0 lodsb ; AL <- [DS*16+SI], SI incs.
 stosw ; AH*256+AL -> [ES*16+DI], DI +2.
 loop loop0 ; CX decs, repeat until 0.

 cmp di,80*25*2 ; Gone through the whole screen?
 jne loop1 ; If not, continue the loop.

 ret ; Return to the command shell.

msg db "Read Skrolli!!! "

61

Special instructions for
special assignments
Although the basic instruction sets can
more or less do everything, they often
have special extensions that speed up
the performance of specific tasks.

Floating point arithmetic has been a
traditional requirement for scientific
calculation. The idea is that numbers
are presented using the mantissa and
exponent, which offers a substantially
larger value range than integers. PC
processors started receiving integrat-
ed floating point units in the age of
the 80486, but not all game consoles
and mobile devices had floating point
hardware even in the 2000s.

Digital signal processors (DSPs)
were used to speed up the processing
of image and sound data. Even basic
processors started receiving DSP-type
SIMD (single instruction, multiple
data) instructions in the 1990s. Exam-
ples of SIMD extensions include MMX

and SSE for the x86 and NEON for the
ARM.

True to their name, SIMD instruc-
tions use several different data elements
in parallel. For example, the MMX in-
struction paddb mm0,mm1 interprets
the values of the 64-bit multimedia
registers MM0 and MM1 as rows of
separate 8-bit bytes when adding them
together. There are also instructions for
rearranging data elements, for example.

The registers in the SSE and NEON
are 128-bit, and the elements can also
be floating point numbers. SSE also
supports complex floating point oper-
ations such as square roots, and it has
replaced the old x87 instructions on
modern x86s.

In the mobile world, in particular,
the same chip may contain an enor-
mous amount of specialised arithme-
tic logic. For example, the Qualcomm
Snapdragon 810 contains eight 64-bit
ARM processor cores, each of which

has three discrete pipelines and the
NEON and floating point extensions.
The chip also has a 288-core graphics
processing unit, a 32-bit DSP and con-
trol chips that are specific to different
radio protocols. Your pocket may be
performing more simultaneous calcu-
lations than an old-age supercomputer.

Hack away!
The most natural, and often the most
rewarding, machine code projects can
be found in the field of simple infor-
mation technology, such as old home
computers, embedded systems and
electronics platforms like the Arduino.
They allow for studying the operation
of the device at a precision of individ-
ual bit shifts and clock cycles, and for
utilising the specific features of the
processor in ways that higher-level
languages do not allow. Cross-assem-
blers running on a different system are
typically used when writing software
for these small devices, and emulators
can also be leveraged for assistance.
You can easily find ready-made guides
for your platform of choice.

On larger computers, high-lev-
el compilers offer the easiest route to
machine code; for example, using the
-S option in GCC creates an assembly
source code file that you can examine
and edit. Compilers also support in-
line assembly i.e. embedding assembly
sections into high-level language. Op-
timising the speed of your code is no
longer a viable motivator for learning
the machine code of modern languag-
es; instead, you can use it to write pro-
grams that are as short as possible.

Other, more direct tools are also
available in addition to assembly com-
pilers. Machine code monitors and de-
buggers are intended for on-the-fly ed-
iting of memory and memory-resident
programs. Hex editors can be used to
examine and modify program files, and
many of them can display an assembly
representation of the file contents.

This article was a very concise look
into the essence of machine code. You
can use the information contained
herein to examine assembly code,
but you should have detailed docu-
ments concerning the instruction set
and processors available before going
deeper. The best way to learn the se-
crets of machine code is to select a suit-
able project and start writing code. 

Define the symbol _start that points the
linker to the beginning of execution.

.globl _start
_start:

Initialize the loop counter.

 movq $1024,%rbp mov r8,#1024

Execute the system call write(1,msg,15),
where 1 is the standard output and 15 the length.
The write call is number 1 in 64-bit Linux
and 4 in 32-bit.

loop0: movq $1,%rax mov r7,#4
 movq %rax,%rdi mov r0,#1
 movq $msg,%rsi adr r1,msg
 movq $15,%rdx mov r2,#15
 syscall swi 0

Decrement the counter, jump if not zero.

 decq %rbp subcc r8,r8,#1
 jnz loop0 bne loop0

Execute the system call exit(0)

 movq $4,%rax mov r7,#1
 xorq %rdi,%rdi mov r0,#0
 syscall swi 0

The string to be written:

msg: .string "Read Skrolli!! "

A Linux example that uses kernel calls for 64-bit x86 (on left) and 32-bit ARM (on right). You
can compile the program on the target system by using gcc -nostdlib program.s -o program
or separately by calling the as assembler and ld linker.

DIY

T he last time I took a
course in electronics, it
was in comprehensive
school over 20 years
ago. I ended up on a dif-

ferent career path, but soldering is one
of the basic skills that I have needed
time after time. Knowing how to cre-
ate different cables is useful, and being
able to repair broken equipment can
also save money.

Soldering in itself is far from rock-
et science: You use a soldering iron to
heat up the solder until it melts and
flows on the spot where you want to
create a joint. Once you lift off the iron,
the solder cools down and forms an
electrically conductive joint between
the two contact surfaces. A solder joint
is more reliable than connection meth-
ods based on bare metal contact, such

as compressible connectors or wire
wrapping.

When working with electrical de-
vices, it is important to stay away from
anything that you don’t understand.
Uneducated hobbyists should keep
clear of anything that involves AC
power. This is why we will pick an easy
project: a digital game controller. In
terms of solder joints, it requires much
less precision than devices using print-
ed circuit boards.

The anatomy of a joystick
Most old home computers used the
Atari pinout in their game controller
ports. The name comes from the an-
cient Atari 2600 game console. Like
the 2600 itself, the controller was
very simple and consisted of only five
switches: up, down, right, left and fire.

Each direction corresponds to a single
pin on the connector, and they also
have a common ground pin. To move
your character or make them fire, you
simply ground the appropriate pin(s).

Digital joysticks are still generally
available, but they usually only have
the basic Atari functions. Since this ar-
rangement does not use all 9 pins in the
connector, a few manufacturers used
the extra ones for their own purposes.
For example, an MSX home comput-
er allows using two fire buttons, and
the joystick port on the Amiga is even
more versatile.

In this example, I will be building an
MSX joystick that has two fire buttons.
Apart from this, the circuit is identical
in all old home computers. It should be
noted, however, that you should never
connect an MSX joystick to an Amiga.

Entry-level soldering
Building electronics is a fun hobby and it’s beneficial
to understand its principles. This story is for those of
us who have always wondered whether they should
try to build something.
Story by Mikko Heinonen
Images by Nasu Viljanmaa, Mikko Heinonen

Image 1. The required tools. Image 2. Raw materials.

2016.1E62

The line that goes to the second fire
button in an MSX is connected to +5
volts on an Amiga; by pressing the but-
ton, you are grounding the +5 volt line,
which may damage the Amiga.

You can easily get the pinout for
your own device by using your search
engine of choice. The query ”MSX joy-
stick pinout”, for example, will provide

you with a clear picture of the pin or-
der required here. The pins are num-
bered from 1 (top left) to 9 (bottom
right) when viewed from the front. Pay
attention, as it is very easy to create a
mirror image of the required connec-
tor.

Tools in order
You will not get very far without
proper tools. At a minimum, you

will require a soldering iron designed
for electronics (preferably, a temper-
ature-controlled soldering station),
some solder and a pair of side-cutting
pliers or a wire stripper. You also need
a moist sponge or a copper cleaning
pad for your soldering iron. Buying a
multimeter is also a good idea, as they
are very cheap and can be highly use-
ful. A small strip of sandpaper makes
prepping the soldered surfaces easier.

The soldering iron needs to be at the
correct temperature. If the iron is too
hot, it will melt the insulation on the
wires; if it is too cold, not even the sol-
der will melt properly. 350°C (660°F)
is a good starting point. Increase the
temperature when using thicker wire
or thicker solder.

Image 2 shows the materials required
for the controller. In theory, you could
build the entire thing by using indus-
trial microswitches, but in the interest
of user comfort, I suggest you purchase
an arcade stick body and two extra fire
buttons of your choice.

The connecting cable will be built
from an Atari joystick extension cable.
There are two reasons for this. First-
ly, soldering a 9-pin connector can be
slightly frustrating for a beginner. Sec-
ondly, stores usually only stock these
connectors with large plastic cases. On
many machines, the joystick ports are
located so close to each other that the
connector will not fit in the port, es-
pecially when using another controller
or mouse at the same time. In addition
to the above, you will need a single
strip of wire in order to connect the
ground pin. This can usually be scav-
enged from a broken device you have
at home.

All parts are available online. A basic
arcade stick controller will cost around
$10, the buttons will be $2–3 per piece
and the cable will set you back around
$5. You will also need to buy a case,
unless you already happen to own

Image 3. A multimeter shows that the ends of
the wire are connected.

Image 5. Soldering iron in place.

Pin MSX

1 brown UP

2 orange DOWN

3 grey LEFT

4 black RIGHT

5 red –

6 yellow FIRE 1

7 blue FIRE 2

8 white –

9 green GROUND

Table 1. The pin arrangement of a generic ex-
tension cable.

Image 6. Victory!

Image 4. Sand the surfaces lightly before soldering.

63

something suitable. For example, if
you have a broken 3.5" external hard
drive, you can remove and recycle the
broken drive mechanism and build the
joystick in the enclosure.

Get your pins straight
Since we will be cutting a few corners
when building the cable, we first need
to determine the pin order of the ex-
tension cable. Use side-cutting pliers
or a wire stripper to cut the male end
of the extension (the one with met-
al pins – not the one with holes). You
can discard the male connector, since
we will only be using the female end
and the cable itself going forward. Strip
the outer insulation from a length of
approx. 20 cm (8 in). Then, strip the
inner insulation on each wire from a
length of 2.5 cm (1 in). Make sure that
the wires are not touching each other.

Take out your multimeter and switch
it to resistance measurement (indicat-
ed by the Omega (Ω) symbol). Wrap
a small length of solder around one
of the multimeter probes. Then, push
the section of solder into the holes on
the female end of the extension cable
one at a time, going through each pin
(1–9) in order. For each hole, connect
the wires into the second probe one at
a time until you find one that shows
a reading on the multimeter (a resist-

ance is measured, which means that
current is flowing through the wire).
Note the wire colour that matches each
pin. Then, use the pinout of the con-
troller you want to build to determine
where the wires need to be connected.
Table 1 shows an example of an exten-
sion cable bought from eBay and the
MSX joystick pinout.

Before starting to solder, tie a knot
in the extension cable at a distance of
some 5 cm (2 in) from the point where
you started to strip the outer insula-
tion. The knot will later act as a ca-
ble clamp. Its correct location will be
shown later.

Wire it up
Switch on your soldering iron and hold
the stick in your hand. Since all of the
switches will be connected to ground,
it makes sense to connect them to each
other first and then to the connecting
cable. I will be using a green ground
wire in the example. You can use any
colour you like, as long as you remem-
ber what it is.

Take a look at your arcade stick and
determine the type of switch that it
uses. If the switch has only two termi-
nals, you can connect them in any or-
der. If there are three, they are marked
NO (normally open) and NC (normal-
ly closed). For this project, we need to

use the NO terminals. The NC termi-
nals are connected when the switch is
not activated, and this is the exact op-
posite of what we want.

The contact surface of the terminal
is most likely oxidised and usually cov-
ered in protective grease. Solder will
adhere very poorly to such a surface.
Before attempting to solder, take a
small piece of sandpaper and rough-
en the surface. Then, pull the wire
through the hole in the terminal and
position it so that it stays in place, as
you will need both hands for the next
step.

Press the iron against the contact
surface and use your other hand to
feed solder from the roll to the top of
the iron. When the solder melts and
attaches to the wire and roughened
surface, lift off the iron. Do not keep
the iron on the surface for too long in
order to prevent it from heating up the
inside of the switch.

If you followed the instructions
above, you have now created your first
solder joint. It might not be pretty, but
if you have solder on the wire and the
contact surface, and the wire does not
come loose when you tug on it gently,
then the joint is adequate for the pur-
pose. Adding too much solder will not
improve the contact – quite the oppo-
site, in fact.

Image 7. Wire stripper. Image 8. Wire with insulation stripped in the middle.

Image 9. Three wires connected. Image 10. Switch directions, viewed from below.

2016.1E64

Next, go round the entire control-
ler and solder the ground wire to one
pin on each switch. You can save some
additional time by using a wire strip-
per. Strip the wire in the middle, pull
it through the hole and then solder it
in place at the stripped section. This
way, you will not need to cut the wire
at every terminal and solder two wires
at each of them.

In the fourth switch, you need to sol-
der two other wires as well: the ground
wire coming from the connector and
the ground signal for the fire buttons.
Strip each wire at a length of some 5
cm (2 in), wrap them together, push
them through the hole in the switch
and solder them in place.

Check your bearings
Next, you need to determine where to
connect the signal wires. First, turn the
controller so that the stick is pointing
upwards. Then, decide which direction
is up and mark this on the controller.

Next, turn the controller upside
down and find the switch that is
pressed when you push up on the stick.
Do this for the other directions and
mark them on the bottom of the con-
troller. This is very important if you
want your character to move correctly.

Now solder the wires for the different
directions to the switch terminals. The
principle is the same as for the ground
wire: strip the insulation, roughen the
surface, thread the wire, solder.

Encapsulation stage
Before soldering the fire buttons, you
should install the controller inside a
case, since most buttons are attached
from below. Since my skills in plastic
work are even poorer than my solder-
ing skills, I will only be providing rudi-
mentary instructions.

Unscrew the ball from the top of
the controller, drill a 12-mm (0.5 in)
hole for the shaft and insert the shaft
through the hole. Reattach the ball and
drill holes for the screws that fasten the
body of the controller. Next, drill holes
for the buttons (approx. 30 mm or 1
1/5 inch, depending on the size) and
tighten them in place. Finally, create
a small gap for the cable on the outer
wall of the enclosure. A round file is
quite useful for fine-tuning the holes
– and a small electric grinder is very
useful.

You can also 3D print the case; Thin-
giverse has a few models that you can
use, for example. The equipment en-
closure that I am using is large, ugly
and hard to work with, but I already
bought one, so we will use it.

Once you have attached the control-
ler and buttons, attach the other end
of the ground wire to one of their ter-
minals and solder it into place. Then,
solder the signal wires for the buttons.
In Image 11, I have stripped the insu-
lation on the ground wire completely
starting from the first button in order
to make it fit through the holes. This
does not matter since all the other
wires are insulated.

When closing the case, make sure
that the knot we made earlier is placed
on the inside of the case. It will act as
a cable clamp and prevent the solder
joints from coming loose even if the
controller is hanging by the cable.

Done!
Our functionalistic game controller
box is now done. In order to ensure the
electrical operation, you can use the
method that I talked about at the be-
ginning of the article – only now, you
need strips of solder on both multim-
eter probes. Connect one probe to the
ground pin and the other probe to the
pin you want to test. In particular, you
should make sure that you have not
connected any live pins (pin 5 on the
MSX, 7 on the Amiga) by mistake.

Naturally, you can improve the con-
troller as much as you like. Better-qual-
ity sticks and buttons are widely avail-
able, and you can build the case out
of wood, for example. The principle
of operation remains the same. If you
feel that you are not ready to solder yet,
you can also use crimp connectors for
attaching the wires. 

65

Image 11. Buttons soldered into place.

Image 12. It may be ugly, but it works.

2016.1E66

A physical space re-
served for building is
especially important
for those living in cit-
ies where workspace

for projects is difficult to come by. Ma-
chines and equipment are expensive to
buy, and a hobbyist only needs most of
them every now and then. Sharing the
costs makes sense. Moreover, meet-
ing like-minded people and working
on projects together is fun. Currently,
there are hackerspaces in at least seven
cities in Finland.

Hackerspace is a difficult term. The
word originates from ”hack”, which
can be understood very broadly – it
can mean writing software or creating
jury rigs. The term originates from the
Massachusetts Institute of Technology,
and it was already used in the 1960s.
Recently, the term ”hacker” has been
used to refer to criminals who pene-
trate an information network. In this
article and in the hackerspace scene,
the word ”hacker” is used in its orig-
inal meaning.

What do you want
to build today?
The most common projects built in
hackerspaces are related to informa-
tion technology, electronics or robot-
ics. However, calling a hackerspace
a computer club, electronics club or
robotics club would be an oversim-
plification. A hackerspace offers its
members a space to
build whatever they
want. If the motiva-
tion is there, noth-
ing is stopping you
from cooking food
or knitting a pair of
socks. Indeed, most
hackerspaces are expanding towards
music, visual arts, biotechnology and
traditional handicrafts. Examples of
these include Helsinki Hacklab’s cours-
es in wearable electronics and different
workshops on electronic instruments.

Hacking projects come in many
shapes and sizes. Utilitarian hacking
involves repairing broken equipment
or building new equipment in order
to save money, such as repairing elec-

tronics or building a valve amplifier
from a kit. When a product that suits
your individual needs is not available,
you can build it yourself – from soft-
ware projects to furniture customisa-
tion. The building projects can also be
related to another hobby; for example,
a photographer may want to build a
gyroscopic stabiliser or a rail for time

lapse photography.
You can also set your
artistic side free by
constructing a syn-
thesizer or coding
demos, for example.

The most impor-
tant part is the en-

thusiasm for learning new things. Or
course, you can buy a cheap thermo
meter at the supermarket, but one that
uses an Arduino is a thousand times
fancier and will teach you new skills.
Building and experimenting is fun by
itself, as long as you have the parts,
tools and space available. Could I use
a bucket and a smoke machine to build
a smoke ring cannon like the one on
YouTube?

Culture

At Gyro Gearloose’s workshop
– hackerspaces and the thrill of making things
Hackerspaces are common spaces that are designed for building different projects. They are
available to all members. What you do is not as important as your genuine motivation and
interest in making things. Hackers are driven by a will to learn and do things that, perhaps, no
one else has done before.
Story by Ville Ranki  Images by Ville Ranki, Juuso Metsävuori

” A hacker is someone
who uses a coffee
maker to make toast.

– Wau Holland,
founding member of

Chaos Computer Club.

67

The need for room
Of course, some projects can be built
at home. Writing software only re-
quires a computer, but when elec-
tronics or mechanical work are added
to the mix, the tools no longer fit on
the living room table. People living in
small urban homes usually cannot set
up a hacking corner in their homes;
instead, working on projects requires
taking out the tools before starting the
work and storing them again after the
work is done. This raises the threshold
for starting a project, and often leads to
the first step not being taken.

Moreover, mechanical work nearly
always makes lots of noise. Using a cir-
cular saw or angle grinder in a flat is a
sure way to get a negative reaction out
of your neighbours. Sawing, drilling
and laser-cutting materials create dust
and smells that may also disturb them.
Even a 3D printer, which seems harm-
less enough, will make a sound that is
comparable to an old matrix printer.

The most extreme hacks involve
welding, casting metals and handling
corrosive chemicals. These activities
require dedicated facilities and tools.
The hackerspace in London, for exam-
ple, has a dedicated storage for scrap
bicycles and their parts as well as weld-
ing equipment that can be used to as-
semble new bikes from the parts.

An extensive stock of components
and parts has been found to be sur-
prisingly useful in practice. Hacking
shifts into high gear when all the parts
can be found off the shelf and you no
longer need to look for them in the
store or order them online. Most pro-
jects are not designed that precisely in
advance, and the contents of the parts
shelf can offer new ideas for the imple-
mentation. Many projects start with
an interesting discovery in the parts
pile. Hackerspaces commonly have
decommissioned equipment that, to a

non-hacker, might appear to be waste.
But good-quality waste electronic
equipment can be a donor for displays,
switches, components, motors and
other useful parts. Starting a hack-
erspace also results in financial gain:
buying tools and machines together is
much cheaper.

Friends and education
For some hackers, a hackerspace is
primarily a social space for meeting
friends and making things together.
The same group of people commonly
go out to dinner, arrange get-togethers
and do other things. Hackers from dif-
ferent cities also cooperate; in Finland,
examples of this include the Partyhat
project and Hackerspace Summit Fin-
land, which is arranged in Tampere in
the winter. The different hackerspac-
es also have shared stands at public
events. In a way, this allows hacker-
spaces to prevent social exclusion. At
a hackerspace, no one has to pretend
they are less geeky.

Training is an important part of the
activities at a hackerspace. A typical
form of this is an evening of training
related to a specific topic that is held at
the hackerspace. Training can also be
arranged for other communities, and
their members can be invited to talk
about an interesting topic. Examples
of training themes include the basics
of electronics and programming, Ar-
duino projects, 3D printing and using
Blender 3D. Arranging training events

always requires a bit of effort, but the
events are always very popular. The
trainer does not always need to be a
specialist; basic knowledge of the topic
and a willingness to share this knowl-
edge are sufficient. The most informal
training events are workshops were
people work in groups and learn about
a topic while the workshop leader pro-
vides assistance in case of problems.

Hackerspace Summit Finland under way in Tampere.

Characteristics of
a hackerspace
•	 Openness

Anyone can join a hackerspace.
Schools and companies, for example,
have always had laboratories and
workshops, but access to them is
usually limited.

•	 Independence
A hackerspace makes the decisions
concerning its operations and is
independent of external parties, such
as landlords or sponsors.

•	 Equality
Hackerspaces typically have a fairly
flat hierarchy and all members are
equal. The board is only responsible
for the important decisions and
matters related to money. Major
decisions and purchases are subject
to a vote. For example, members are
allowed to improve the space – ac-
cording to their own judgement and
at their own responsibility – without
asking anyone.

Hackerspace vs. Hacklab
In Finland, most hackerspaces call
themselves hacklabs. This is a synonym
of hackerspace, like makerspace and
fablab. Hacklab is easier for Finns to
pronounce, but hackerspace is a more
global brand. You can name your asso-
ciation however you like.

2016.1E68

How to set up a hackerspace
1. Set up a core group
You will need 3 to 5 interested people
and some visibility online. Create a
simple website and a mailing list. In
Finland, you can set up your own city.
hacklab.fi domain under hacklab.fi.
Add your city to the list at hackerspac-
es.org. Network with other hackers on
IRC, by visiting other hackerspaces
and by attending Hackerspace Sum-
mits.

2. Gather interested people
Arrange meet-ups at cafes, for example,
and get to know each other. Advertise in
places where you might find interested
people. Schools, hobby clubs, workplac-
es and even bulletin boards at super-
markets are good places to advertise in.
Gather contact details from people who
want to join after you have acquired fa-
cilities for your hackerspace.

3. Set up an association and
apply for financial support
In some countries, you need to be reg-
istered as an association to open an ac-
count and sign a lease agreement. It is
a good idea to copy your rules from an
existing hackerspace in order to ensure
that they are approved. Seeking finan-
cial support should also be started at
this point. Good relationships, persis-
tence and a bit of luck will help. Note
that it may take a long time to get the
actual support after submitting your
application. It is possible to get started
without any external financial support,
but it will make starting a lot easier.

4. Acquiring the facilities
Once you have enough interested peo-
ple, think about the maximum sum per
month that you are willing to pay for
the membership. This will give you an
idea of the type of lease that you can af-
ford. Study the prices in the target area.
In cities, the best locations are usual-
ly within walking distance from the
centre in order to allow long-distance
guests to reach the place. Contact the
city, other hobbyist clubs and other
similar parties to enquire about free

locations. Getting a place for free or
for a nominal rent would, of course, be
a stroke of luck. Remember to include
the cost of an Internet connection in
your budget. The most important fea-
tures for the facility are 24-hour access,
permission to make noise and a work-
ing toilet. As the number of members
increases, electronic access control will
become a necessity.

5. Equipping the facilities
In the beginning, the association will
probably not have any assets, and the
facilities will need to be equipped with
donations from the members. Used
office furniture and IT equipment
can be found for free, and members
can volunteer their time for renovat-
ing the premises. At this point, mem-
bers will usually donate their tools or
materials to the association or place
them on long-term loan. More expen-
sive devices (such as 3D printers) can
be financed with the income received
from membership fees or by arranging
a fundraiser among people interested
in the purchase. Those who do not
participate in the fundraiser can be re-
quested to pay a small fee for using the
device.

6. Growing your membership
Increasing the number of members is
important in the beginning. Reserve a
stand at every event that might attract
potential members. Local events are
especially important, and remember
to include events that have a non-tech-
nical audience. Prepare for the fact
that most people have never heard of
hackerspaces and that you will need to
explain it briefly and in simple terms.
Invite local journalists to write about
you. Arrange open nights (Tuesdays
are a common choice) during which
anyone can visit and learn about your
activities. Arrange open nights, train-
ing and theme nights. Remember to
tell your guests about what you do and
involve new members in your activities
from the beginning. 

Larger hacker projects
from Finland
•	 Partyhatwork – A free-form hat

used at public events. It communi-
cates with other hats over the XBee
network. The hats have multicolour
LEDs and they can be used to create
synchronised ”demo effects” over
the network. Built in cooperation
with several hackerspaces.

•	 The Chernobyl Simulator – Helsinki
Hacklab’s exercise in Soviet retro and
multimedia. Includes a 2 m by 2 m
”reactor lid” among other things.

•	 R100 – A remote-controlled robot
built in the frame of an electric
wheelchair. It can survey its environ-
ment and move autonomously with
the assistance of a laser scanner.

•	 Ice sled – An ice vehicle that consists
of a snowboard and four skis con-
nected to a snow kite.

•	 Vacuum robot art project – Assist-
ing the artist Harri Larjosto in the
creation of a work where modified
vacuum cleaner robots act as a
moving platform.

•	 Metro display – Aiming to recreate
Tetris on a decommissioned metro
display. At the moment, printing text
is already possible and the situation
is developing daily.

•	 24×16 LED matrix - 1.20 × 0.40 m.
16 levels of brightness per pixel, 4
NES controllers, i2c, was presented at
Assembly 2012 in 8x48 format.

•	 ”Elovalo”, a work of art consisting
of three LED cubes with 8×8×8
pixels in each. The work was placed
in Jyväskylä’s church park as part
of the City of Light event in the
autumn of 2012. The cubes operate
autonomously with batteries and
an AVR microcontroller handles the
arithmetic operations.

•	 LazorTouch – A video wall con-
trol system built for the Vapriikki
Museum Centre in Tampere. It allows
the visitor to select a video clip by
standing on a spot painted on the
floor. Uses a laser scanner.

http://hacklab.fi
http://hackerspaces.org
http://hackerspaces.org

(def fib-seq

 (lazy-cat [0M 1M] (map + (rest fib-seq) fib-seq)))

(nth fib-seq (/ 36rSolita 1000000))

www.solita.fi/<insert result here>

CLOJURE
IN PRODUCTION

Since 2012

Your ad here?
Contact sales@skrolli.fi

69

mailto:sales@skrolli.fi

2016.1E70

B ack in early 1989, the
Finnish computing
magazine MikroBitti
snatched what would
become the greatest

journalistic coup of its 30+ year his-
tory – an international exclusive on
the mega game Illuminatus by a little
known German developer.

Even in the age before the Web, this
story of Illuminatus went viral across
Europe, with publishing houses and
press flooding MikroBitti’s phone
lines. Illuminatus was a game for the
annals, the magazine gushed, and cer-
tainly in a way it was.

Alas, despite the great publicity, it
would take 27 years before the public
could play the game.

A trek to remember
The premise of Illuminatus was cer-
tainly nothing too fantastical for 1989.
In that age of ever more ambitious
MicroProse flight simulators, a five-
disk vector graphics based space flight
game for the Atari ST with a 200-hun-
dred-page manual and a bunch of
paper maps and keyboard overlays
sounded par for the course. Indeed,
what made Illuminatus plausible was
its relative technical modesty. It would
merely combine several hit game types
of its era and do it well.

Like its contemporaries, Elite and
Starflight, Illuminatus would use pro-
cedural content creation to generate a
vast universe, far beyond the storage
capacity otherwise available. Nonlin-
ear gameplay would allow the player

EPIC FAIL

The greatest game that never was

ILLUMINATUS

PLAYABLE

DEMO ON THE

COVER DISK!

It was supposed to be
the space opera of the
decade – not a game,
but a lifestyle.
Instead, it became a
meme.
Story by Janne Sirén

71

to literally plot their own course. The
player would start with one spaceship,
a Cod Mk.I, fly around in this universe
hauling cargo and, over time, accumu-
late money for more advanced vessels
and missions.

This familiar setup already con-
tained hints of greatness, though. Plan-
ets were not merely target destinations
for those epic space treks; a Galileo
MK-7 shuttle was to be taken down for
flight simulation over Virus-like frac-
tal terrains of plains, mountains and
colonies. Illuminatus promised to be a
great solo game.

Civilization in space
What truly set Illuminatus apart, how-
ever, was how the game was to pro-
gress. The procedurally created uni-
verse was not only immensely large,
it was also alive. Artificial intelligence
ran everything from space pirates and
colonies to an empire’s military fleet.
The player’s choices would affect how
the universe around them changed
and the universe would also evolve on

its own.
As the player gained power and

prominence, the game would eventu-
ally move from space and flight simu-
lation to a tactical level and then final-
ly to a strategic level, where the player
would control entire armies and fleets,
nations and worlds. Finances, diplo-
macy and even political assassinations
would come into play.

Due to the hardware considerations
of the era, the game’s vantage point
would, at this stage, move to that of
an Empire-like strategy game. Massive
surface wars and space battles consist-
ing of thousands of ships were to be
fought out between both computer op-
ponents and up to four human players
over a modem.

A star too far
That was the promise, anyway. Mikro-
Bitti interviewed the game’s developers
Jürgen Sternreise and Erik Dorf from
Enterprise Games, who were said to
have mortgaged their houses and cars
to finance the game, and published a

few screenshots. The article generated
massive interest, with several game dis-
tributors calling MikroBitti for more
information, including the British
company CRL, which was impressed.
Illuminatus also soon appeared for
pre-order in mail-order catalogues.

However, as it happened with many
ambitious mega games of the 1980s,
hype got the better of Illuminatus and
by autumn it was all but forgotten
commercially. Persistent rumours talk
of Jürgen later lamenting the lack of
online crowdfunding back in the day.
Thus, globally, Illuminatus never left a
lasting mark, but in Finland the prom-
inent publicity made it into a cult phe-
nomenon.

It is not surprising then, that the
abortive relaunches of Illuminatus
have also started from Finland. The
first resurgence of Illuminatus came in
the 1990s, when the demo group Fu-
ture Crew – the minds behind the likes
of Futuremark and Remedy – started
to work on Illuminatus for Windows.
In the end, nothing came of it, either.

MikroBitti published the first exclusive report on Illuminatus back in 1989.

2016.1E72

In a further twist, this activity report-
edly spawned open-source projects. In
2014, Skrolli magazine unveiled the
rift between Future Crew and com-
munity versions from FreeIllumina-
tus and OpenIll. According to Skrolli,
Future Crew had actually abandoned
their planned commercial version of
Illuminatus due to death threats from
one of the community projects.

We want to believe
Of course, one fact has greatly contrib-
uted to the elusiveness of Illuminatus:
the whole thing was an April Fool’s
Day prank by MikroBitti for their
4/1989 issue. Skrolli’s 1 April 2014 re-
port on the fictitious community ver-
sions was also merely a tribute to this
highly successful ruse. The prank was
masterminded by MikroBitti game
reviewer Niko Nirvi in 1989 and the
follow-up by Skrolli’s Editor-in-Chief
Ville-Matias Heikkilä in 2014, both
with their respective teams.

Few seemed to get the joke in 1989.
The lack of mainstream Internet guar-
anteed several weeks’ worth of atten-
tion for the hypothetical game, until
MikroBitti came clean later that year.

Thus, for quite a while, Illuminatus
seemed to exist. The commercial in-
terest generated back then and the
subsequent Finnish cult following that
has lasted to this day are very much
real. Regionally, at least, Illuminatus
remains a solid predecessor of Internet
memes.

Riding this wave of popular sen-
timent created by the prank, Future
Crew really attempted to put Illumina-
tus together in the 1990s before giving
up on it, though Skrolli made up the
part about the death threats. Unfortu-
nately, neither the FreeIlluminatus nor
OpenIll projects exist, but, of course,
many other games have implemented
and surpassed the features of Illumina-
tus since.

The last laugh
The butt of this joke is that, in an ef-
fort to create a video for the continua-
tion of the Illuminatus meme for April
Fool’s Day 2014, Skrolli did in fact
develop a private, playable PC version
of a space flight scene in Illuminatus.
Skrolli recreated the Illuminatus vis-
uals, staying as true as possible to the
1989 MikroBitti screenshot mockups

made originally by Petri Teittinen in
Deluxe Paint II.

So, in the end, the prank made itself
real – sort of. We have kept this version
to ourselves until now, but with the
launch of Skrolli International Edition
in April 2016, for the very first time
ever, you can find this playable demo
on the virtual cover disk of this issue
of Skrolli! Just scan the QR code, an-
swer the password question and enjoy
Illuminatus.

The Illuminatus of 1989 was very
controversially – albeit fictitiously –
made only for Atari ST. Ironically, what
little existed was actually designed on
an Amiga and now runs on PC. You
see, platform wars, like Illuminatus,
never die. 

FreeIll is one of the two Illuminatus clones whose rift Skrolli uncovered in 2014.

73

2016.1E74

A. Harris, Aaron Brailsford, Aaron
Puchert, Abraham Liao, Achintya
Rao, Adam Blatchley Hansen,
Adam Piper, Adele Asuncion,
Aidan Cavanagh, Aku Kotkavuo,
Alasin Media Oy, Alec Smith,
Aleksey Vorona, Alessandro
Cortini, Alex Hay, Alexander
Calderon, Alexander Morrow,
Alexander Turkovic, Alexander
Wihl, Alexander Zogheb,
Alexandre, Algot Johansson, Ali
Kaafarani, Allen Karlowa,
Amanda Werner, Ana Silva,
Anders Elfgren, Andreas Flåten,
Andrew, Andrew Harkness,
Andrew Lee, Andrew Male,
Andrew Schcik, André Koot,
André Rosa, Angelo Caruso, Anssi
Jaatinen, Anssi Kolehmainen,
Anssi Nurmilahti, Anton
Rautanen, Antti Seikkula, Antti
Viklund, Ari Palo, Armando
Lüscher, Armando Punzo, Arni
Sumarlidason, Arttu Piironen,
Ashton Davis, Asser Lähdemäki,
Astro Jetson, Audun Stien, Axel
Jonsson, B.A.T ry (BatMUD),
Bakhshi Dashyan, Balazs Hollos,
Barry White, Ben Boardman, Ben
Webber, Bendert Zevenbergen,
Benjamin Kittridge, Benjamin
Lange, Benjamin Särkkä,
Bernardas Alisauskas, Blair
Harrison, Bogdan, Brad Carter,
Brandon Ambrose, Brandon
Bettle, Brandt Jorgensen,
Brendan Grainger, Brent Rossen,
Brian Murray, Bruno Antunes,
Carl Angervall, Carl-Martin
Pershed, Catherine Boissoneault,
Charles Banas, Chris Abbott,
Chris Chapman, Chris Kraft, Chris
Nash, Chris Nixon, Chris Stone,
Christian Rinnen, Christof
Meigen, Christoph Grote,
Christopher Davis, Christopher
Fortin, Ciaran McElhatton, Claire
Steele, Claudia Wecker, Clément
Oriol, Coen Bust, Colby Fayock,
Colin O’Brien, Corbin Auriti, Craig

Conner, Craig Fisher, Craig
McLean, Creeatist Studios, Dan
Radovich, Daniel Callahan,
Daniel Grankvist, Daniel
Lamando, Daniel Landau, Daniel
Maxwell, Daniel Milenkovic,
Daniel Miller, Daniel Nitsche,
Daniela Augustin, Daphne
Schmidt, Dariusz Idzkowski,
Darren Whiting, Dave McHugh,
David Azcarraga, David
Ferrandez, David Hulick, David
Mery, David Pronk, David Reiss,
Dean Verleger, Demir Delic, Devin
Smith, Devin Valdez, Dick Steele,
Drew Johnson, Drew Roberts,
Duncan Sample, E. Winter,
Edmund Teo, Edward Chen,
Edward Thomas Burke, Eetu
Korhonen, Elizabeth Cartwright,
Elko Panzyk, Ellen Clark, Elvinas
Ancuta, Emre, Eric Greenburg,
Eric Heinrichs, Erik Crouch, Erik
Rintala, Erik Schuessler, Erki
Metsanurk, Eryk Sawicki, Esko
Luontola, Evan Amaral, Evert van
Rossum, Fabrice Charlier, Felix
Penthin, Fleurot Nicolas, Frank
Pietersen, Franklin Barnett,
Franklin van Velthuizen, Franz
Beckenbauer, Frosmo Ltd,
Futurice Oy, Gabriel Fair, Gabriele
D’Antona, Gareth Noyce, Garret
Odegaard, Gavin Smith, Gaëtan
Rivet, Gerard Ruiz Torruella,
Gerrit Helling, Goutham Dodla,
Grant Bowker-Bell, Grant
Hutchinson, Gregory Sanders Jr.,
Greyson Dehn, Guilherme
Gonçalves, HNF GmbH, Hannele
Kormano, Hannu Viitala, Harri
Granholm, Harri Koponen, Heath
Manners, Hector Fiel Martin,
Heesung Yang, Helmi Nykänen,
Henri Nurmi, Henri Salo, Henrik
Lindhe, Henryk Helsky, Hernan
Silberman, Hunter Gatewood,
Iikka Salmela, Ilari Heldan, Ilari
Lind, Ilkka Heimo, Ilkka
Pohjalainen, Ilya Margolin, Imdad
Hussain, Isaac Best, Ivan Leroux,

JC Ryan, Jack Reed, Jacob
Wahlman, Jake, Jake C., Jake
Fahrbach, James Bailey, James
Klaas, James Luberda, James
Luke, James Morrison, James
Wright, Jamie Anker, Jani Hanka,
Jani Reunanen, Jani Suhonen,
Janne Heinonen, Janne Inkilä,
Janne Johansson, Janne
Kiiskinen, Janne Miettunen,
Janne Mässbacka, Janne
Peltonen, Janne Ropponen, Janne
Sirén, Janne Toivola, Janne
Warén, Jannik Meyer, Jared
Lenahan, Jari Jaanto, Jari
Tulilahti, Jari-Matti Hannula,
Jari-Matti Mäkelä, Jarkko
Ilomäki, Jarkko Lehti, Jarkko
Sakkinen, Jarmo Kiiski, Jason
McClellan, Jason Tudisco, Jasper
van Eeuwijk, Jay Cornwall, Jean,
Jeff Grayson, Jeff Parker, Jeffrey
Guevin, Jeffrey Hofer, Jelle, Jens
Füllenbach, Jeroen Zwarts,
Jerome Ng, Jesper Svensson,
Jesse Rosen, Jim Lott, Jimmy
Devlin, Joe Dempsey, Joe
Warrington, Joel Lehtelä, Joel
Ohman, Johan Kiviniemi,
Johannes Genberg, John
Boudreaux, John Grega, John
Marino, John Patterson,
Johnathon Selstad, Jon Donovan,
Jon Ezeiza, Jon Moroney, Jonas
Wedin, Jonathan Camp, Jonathan
Mukai-Heidt, Jonathan Poloff,
Jonny Kelso, Joona Ruokokoski,
Joonas Pihlaja, Jordan Hoff, Joris
Bolsens, Jorma Oksanen, Joseph
Ienna, Joseph Smyth, Joshua
Case, Joshua Inatey, Joshua
McCord, Joshua Melsom, Juha
Klemettinen, Juha Sievi-Korte,
Juha-Pekka Lautala, Juhamatti
Niemelä, Jukka Hirvonen, Jules
Cahon, Julien Roger, Justin Webb,
Jürgen Klinsmann, Kai
Nikulainen, Kalle Mansikkaniemi,
Kalle Paimen, Kalle Sirkesalo,
Kari Alatalo, Kari Oksanen, Kari
Wassholm, Karl O’Brien, Kasper

BACKERS

75

Broegaard Simonsen, Kate
Hanley, Kati Kitti, Kelvin Arcelay,
Kevin Clizbe, Kevin Dixon, Kevin
Jansson, Kevin Murphy, Kevin
Spring, Kimmo Toivola, Klaus
Bliddal, Kristoffer Just Andersen,
Kyle Schreiber, L. Dodson, Lasse
Immonen, Lasse Mattila, Lauri
Kangas, Lauri Nurmi, Lawrence
Manning, Leena Nykänen, Leif
Esten Kielland, Leif Weispfennig,
Liz Sippin, Loren Hersh, Lotta-
Liisa Joelsson, Lukas Lozovski,
Lukas Sautter, Lumi Pakkanen,
Luís Alves, Maarten Jorens,
Magnus Johansen, Maiju Jouppi,
Maj-Britt V. Kimm, Marc Khouri,
Marc Popp, Marco Cecconi, Mario
Leal de Alejandro, Mariusz
Marciniak, Marjo Kukkonen /
iGame, Mark Mackenzie, Mark
Symonds, Markku Reunanen,
Marko Haarni, Marko Järvinen,
Marko Milost, Markoolio Jylhä,
Markus Juuti, Markus Ketzmerick,
Markus Markkanen, Markus
Pasula, Markus Salmijärvi,
Markus Solälv, Martijn Koster,
Martins Zagorskis, Mateusz
Karczewski, Mathew, Mathieu
Agar, Matias Mäkinen, Matias
Sirén, Matt Lambie / The Frontier
Group, Matt Laszewski, Matteo
Sasso, Matthew Bloomfield,
Matthew Gidden, Matthew
Jeffries, Matthew Keehan,
Matthew Key, Matthew Robeson,
Matthew Vandehey, Matti
Alanen, Matti Hämäläinen, Matti
Tuunanen, Max Sandholm,
Maxim Starodub, Meeri
Kangasmäki, Meredith Lister,
Michael Dankanich, Michael
Falkensteiner, Michael Frnka,
Michael Goubeaux, Michael
Harlan Lyman, Michael Jones,
Michael Kargas, Michael Kohne,
Michael McLellan, Michael
Nardilli, Michael Tedder, Michael
Zapf, Mika Tanninen, Mikael
Eriksson, Mikko Heinonen, Mikko

Hypponen, Mikko Laine, Mikko
Leskinen, Mikko Puustelli, Mikko
Riikonen, Mikko Viitala, Moritz
Bartl, Morten Sivertsen, Mounir
Orfi, Mr. K. Low, Mr. Predrag
Spasojevic / iGame, Nasu
Viljanmaa, Nathan, Nathan
Collins, Nathan Duncan, Nathan
Oesterle, Neil Davidson, Neil
Kelleher, Neil Lawlor, Niall Colfer,
Nic Dixon, Nicholas Medau, Nick
Artman, Nick Jordan, Nick
Pastore, Nickolai Belakovski, Niek
van de Pas, Niklas Laxström, Niko
Järvinen, Niko Nirvi, Nils Sohn,
Ognen Plavevski, Oleg Lavrovsky,
Oleg Zhoglo, Oli Oskarsson,
Oliver O’Brien, Oliver Wangler,
Olivia Specht, Olli Oikarinen, Olli
Pekkola, Omair Qazi, Ondrej
Dolejsi, Ossi Syd, Ossi Tiltti, Owen
Smith, Pami Ketolainen, Pasi
Pohjanheimo, Patrick Brown,
Patrik Koskinen, Paul Colea, Paul
Delahunty, Paul McCulloch, Pauli
Tuominen, Pavel Soriano, Pekko
Lainiala, Perttu Niemi, Pete, Peter
Lee, Peter Mateja, Petri Koistinen,
Phil Harrison, Phil Wilkins, Philipp
Nägele, Pierre Equoy, Prateek
Singh, Pål Nygård, Raffael
Gottardi, Raine Liukko, Ralph
Brorsen, Raoul Plommer, Ray
Cielencki, Reiner Herrmann,
Reshef Edo, Reynard Moore,
Ricardo Rebelo, Richard Prokesch,
Rick Richardson, Riku Itäpuro,
Riku Salkia, Riku Väkevä, Rob
Rosa, Rob Salmond, Rob Uttley,
Robert Vivrette, Robin van
Stokrom, Romain Giot, Roman
Orzegowski, Rory A. O’Connor,
Ross Murray, Ross Simpson, Ryan
Johnson, Ryan McBride, Sahar,
Sami Kyostila, Sami Rautiainen,
Sami Rosendahl, Sami
Ruokoselkä, Sami Teräväinen,
Sampo Töyssy / 10tons Oy,
Samuel Kuehnhold, Samuel Lloyd,
Samuli Koivuniemi, Samuli
Siivinen, Samuli Vuorinen,

Santiago Andrigo, Sean Canton,
Sean Thomas, Sebastian Neuner,
Sebastian Rothlauf, Sebastian
Wernicke, Seth Szymanski, Silver
Juurik, Simo Koivukoski, Simon
Forsyth, Skyler Kehren, Sol Bekic,
Sonja Dorrenboom, Spellpoint Oy,
Spude, Stathis Goudoulakis,
Stefan Kiel, Stefan Seemayer,
Stephan Curran, Stephane
Raymond, Stephen Orlando,
Storme Winfield, Stuart Flawith,
Sue Ilsley, Taisia Oy, Taneli Leppä,
Tanya Jansson, Tapani Liukkonen,
Tatu Leskinen, Taylor Breitbarth,
Taylor Landicho, Ted Steiner,
Teemu Likonen, Teemu Riipinen,
Tero Turtiainen, Theo Holloway,
Thomas Berends, Thomas
Mavropoulos, Thomas Nybo
Jensen, Thomas Passer Jensen,
Thomas Schwery, Thor Højhus
Avenstrup Jensen, Timmy
Schautz, Timo Hemphill, Timo
Jutila, Timo Koski, Timo Kuni,
Timo Laulajainen, Timo Stordell,
Timo Sulg, Tinny Nguyen, Tobias
Heilmannseder, Tobias Kaptain,
Tobias Preuck, Toby Butzon, Tom
Jorquera, Tomer Shvueli, Tomi
Liiten, Tomi Ollila, Tommi
Härkönen, Tommi Tuura, Tommi
Äijälä, Toni Kuokkanen, Tony
Aparicio, Tony Burgio, Topher
Mathrusse, Tore B. Bjoernsen,
Travis Howe, Troy Martin, Troy
Randle, Troy Ready, Tuomas
Hokka, Tuomas Jormola, Tuomo
Mäkelä, Tuomo Ryynänen, Tuomo
Tammenpää, Tuuli Tammenkoski,
Urs Ganse, Varun Palivela, Vesa
Hirsimaa, Vesa-Matti Manninen,
Vijay Raj, Viktor Elgstrand, Viktor
Friberg, Ville Jouppi, Ville Ovaska,
Ville Ranki, Vincent Chang,
Vincent van Horssen, William
Conn, William Lazaris II, Wilson,
Yen Joe Tan, Ymr Stålskjegg, Youri
Kersten, Yu Zhou, Zach Bryant,
Zachary DiMaria, Zachary Neely,
Zan

BACKERSBACKERS

