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Slow and steady
Skrolli is a paper magazine about computers, born in a world 
where paper media was already dying out because of computers. 
Contradictory and utterly insane, many would think.

T o most people, computers are like social media feeds – short-
lived, ever-changing and historically shallow. Any exceptions 
to the rule can be easily put under the comfortable umbrella 

of “retro”. This is also the view endorsed by much of the mainstream, 
consumption-oriented computer journalism.

We at Skrolli see things differently. To us, there is no “retro”. Comput-
ing culture, like any other culture, involves traditions, historical strands, 
ideas and material objects. They can always be used as a basis for some-
thing new – regardless of whether they are considered obsolete or not. 
And there is a lot in computing culture that is worth putting on paper 
and storing in the attic for decades. We are slow and proud of it!

But what is computing culture in a world where computers engulf 
every aspect of people's lives? We focus on where computing is irredu
cible: if you only casually chat or play Go with another  person over the 
Internet, it is not really computer culture, because you can do it without 
a computer as well. Doing it with an AI, however, would be closer to the 
core, and the history and design of such AIs would be very close to what 
we are about.

Skrolli is a voluntary project run by a group of computer enthusiasts 
from Finland. At present, the project covers its running expenses, but 
none of us can yet do this for their main job. This is mainly due to the 
smallness of the audience that understands Finnish, and a large reason 
for the existence of this international issue is our desire to turn the hob-
by into a profession.

We have already published thirteen issues in our native language, 
and the articles in this issue are mostly translations of what was already 
available. You can probably notice our background in the emphases and 
some other peculiarities in the articles. Future issues are likely to have 
international contributions – maybe even from you – and, thus, more 
diversity as well.

Nevertheless, we picked some of our best. We gave the backers a trans-
lated list of articles and asked what they would like to see, and included 
some of our favorites in the mix. The variety of articles is somewhat 
similar to a typical Finnish issue – including hacking, programming, 
gaming, culture, history, hardware and a little bit of weirdness.

We hope you enjoy the first international issue of Skrolli! We also 
hope you spread the word about it and encourage your friends to buy it 
– because our future depends on it!

P.S. We promised our backers something extra, since our Indiegogo 
campaign was 127% funded. Please find a virtual cover disk with a play-
able demo on the cover! 

Editorial

Cover image:
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D uring their careers, 
many computer 
hobbyists have tried 
countless device and 
software platforms. 

Some have even surveyed them inten-
tionally in order to play their games 
or use them to create art. This sort 
of exploration also creates an under-
standing of the features that make a 
platform comfortable or interesting to 
work with. The fantasy console Pico-8 
is one idea of an interesting platform.

The Pico-8 is probably best de-
scribed as an emulator for a system 
that does not exist. Its overall spirit is 
very 8-bit and you might envision it as 
a handheld console like the Game Boy 
Color. The screen offers a resolution of 
128 × 128 pixels at 16 colours and there 

are four chiptune channels for sound.
However, this is not merely an exer-

cise in alternative history; the design 
of the Pico had very different starting 
points than devices that might seem 
similar on the surface. Instead of try-
ing to make the most out of a limited 
amount of logic, it offers a small set of 
building blocks that are as fun to play 
with as possible. The developer hopes 
that, over time, the technical frame-
work of the Pico-8 would give rise to a 
unique aesthetic that would be expres-
sive in spite of its minimalism.

First glance
The Pico-8 appears slightly schizo-
phrenic. After start-up, it enters a 
mode that is more reminiscent of a 
home computer with a keyboard and 

mouse than a game console. The com-
mand interpreter allows for loading 
software and typing in print com-
mands, for example. By pressing Esc, 

Pico-8
Fascinating fantasy console
When the existing machines no longer inspire you, it is time to switch to imaginary ones.
Story by Visa-Valtteri Pimiä, Ville-Matias Heikkilä
Images by Laura Pesola, Ville-Matias Heikkilä

After start-up, the Pico-8 enters a command 
line console that can be used to input Lua 
commands.
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you can enter an editor that has ded-
icated sections for code, graphics and 
sound. However, only the internal 
applications can access the keyboard, 
mouse or all parts of the file system 
– to external applications, the Pico is 
a game console with ROM cartridges 
and a two-button pad controller.

Pico speaks Lua, a limited but fairly 
expressive language that was originally 
designed for game scripting. In other 
words, the Pico virtual machine does 
not emulate any processor in itself – 
not even one that executes bytecode. 
Everything is written in Lua, and this 
is the lowest level a programmer can 
access.

There are two main formats for dis-
tributing games and other software. 
The cartridges, or carts, are PNG 
pictures that have the appearance of 
a physical cartridge and sticker, but 
whose lower bits store the program 
code and graphics and sound data like 
a watermark. Software exported to 

HTML5 format can be run on modern 
Web browsers without the actual Pico-
8 software.

Bounds and limitations
The most visible technical feature of 
the Pico is the 128 × 128 pixel screen 
with a fixed 16-colour palette. The 
palette has a fairly personal and easily 
identifiable choice of colours, and its 
designer has clearly had more of an eye 
for colour than the average engineer.

Although Pico games typically use 
background maps consisting of 8 × 8 
pixel blocks, and 8 × 8 pixel sprites on 
top of them, this is not a limitation. 
The graphics mode is a pure pixel buff-
er that can be used to draw anything 
– and the machine is also fast enough 
to run 1990s demo effects smooth-
ly. However, the platform encourages 
the use of 8 × 8 pixel blocks by offer-
ing functions for drawing maps and 
sprites that are faster than using your 
own code to do the same pixel by pixel.

The cart can hold 15,360 bytes of 
compressed code. The maximum 
length in the editor is 65,536 charac-
ters or 8,192 tokens in tokenised form. 
These limits are not easily met – even 
many of the best games are clearly be-
low these figures. On the other hand, 
the existence of this limit encourages 
simplicity and linearity, as there is no 
room for enormous game engines and 
multi-layered abstractions.

The cart has 12,544 bytes reserved 
for graphics and 4,608 bytes for sound. 
Of course, these data areas can be 
used for other purposes – the memory 
handling commands allow it to be ac-
cessed at the byte level. Upon program 
start-up, the contents of the cartridge’s 
data side are copied into user RAM 
where the program can modify it, if 
necessary. User RAM also includes 
slightly under 7 kilobytes of space re-
served for the user and 8 kilobytes of 
video memory. 

The graphics data consists of 8 × 8 
pixel sprites where the entire colour 
palette can be used freely. The maxi-
mum number of sprites is 256 and the 
map consists of 128 × 32 sprites. It is 
possible to double the size of the map 
by settling for 128 sprites.

On the sound side, the equivalent 
of a ”sprite” is a sound effect (sfx) that 
consists of 32 note locations. Each 
note location contains the note and the 

Game cartridge. In theory, you could scan this 
picture and execute the binary on the Pico-8.

The sprite editor is used for sprites as well as 
larger pixel art.

The map editor.

This mode of the sound effects editor is bet-
ter suited for music. Actual sound effects are 
usually drawn as curves.

The music editor combines patterns into 
songs similarly to a tracker.

If the code editor seems too limited, you can 
always load the .p8 files in an external text 
editor.
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waveform, volume and effect; there are 
8 different types of each of these. The 
playback speed can be altered; lower 
speeds are better suited for music than 
sound effects.

Similarly to tracker music, a song 
consists of patterns that define which 
sound effect is played on each of the 
four channels. There is space for 64 
patterns, which can hold several songs 
when loops and pattern end flags are 
used.

While the graphics side allows 
everything to be built from individual 
pixels, the user cannot access the ”reg-
isters” of the sound system. In theory, 
you could build a player routine by 

modifying the sound data in real time, 
but the limits of the virtual machine’s 
timing might not allow this. However, 
you can easily create different experi-
mental soundscapes by writing ran-
dom data in the sound effect memory.

In addition to the program code, 
data RAM and cartridge ROM, the 
Pico offers 256 kilobytes of space for 
the Lua interpreter. This is a relatively 
large amount when compared to the 
Pico’s other memory spaces, but it will 
fill up easily with large tables, for ex-
ample. One element of a number table 
takes up eight bytes, half of which is 
taken up by the actual data. Each num-
ber consists of a 16-bit integer part and 

a 16-bit fraction, which means that bit 
arithmetic operations can be used to 
compress them.

When running low on space, Pico 
can also read data from other ROM 
cartridges and even write to them. Pro-
gram code has a strict limit, however; 
it can only be executed from the origi-
nal cartridge. Lua in itself includes the 
possibility to execute data as code, but 
it has been removed in the Pico-8. This 
means that those requiring more code 
space will need to build their own vir-
tual machine.

The Pico-8 does not execute Lua code 
as quickly as the computer’s processor 
allows. Execution times have been de-

Celeste by Matt Thorson and Noel Berry is a platform game with a 
steep difficulty curve.

Ennuigi by Josh Millard is more of a minimalist art film than a game. 
It is a mellow, melancholic interpretation of the story of Super Mario 
Bros.

The atmospheric Dusk Child by Sophie Houlden mixes together adven-
tures, puzzles and platforming.

Picoracer2048 is a line vector based racing game that is, unfortunately, 
single player only.
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fined for the different functions. This 
speed limit will rarely lead to problems 
during the development of typical Pico 
software, but it standardises the limits 
of the platform and prevents spiralling 
hardware requirements. According to 
the authors, a first-generation Rasp-
berry Pi is enough for running even 
the most demanding Pico software at 
full speed.

How to code on it
Lua is written in all capitals and is, 
therefore, reminiscent of BASIC. For 
example, many people will remember 
the BASIC version of the following in-
finite text printout loop:

::START::
PRINT "HELLO"
GOTO START

Instead of the Lua standard library, 
Pico offers a fairly limited selection 
of BASIC-type functions: drawing 
commands, a couple of sound com-
mands, controller input functions and 
a few functions for memory handling, 
mathematics, bit arithmetic and string 
handling.

The basic drawing commands can 
be used to draw pixels, rectangles, 
lines, circles, text, sprites and back-
ground maps. The palette colours 
can be switched for the drawing com-
mands and you can also make colours 
transparent in terms of the sprites and 
background graphics.

Drawing moving graphics is more 
reminiscent of a PC than the 8-bit 
home computers. The Pico has no 
”hardware sprites” or ”hardware 
scrolling”. Instead, the display is usu-
ally redrawn for each refresh: clear the 
screen, draw the background and then 
draw the necessary sprites.

There are two functions available for 
drawing sprites: spr() draws an indi-
vidual 8 × 8 pixel sprite at the provid-
ed coordinates, whereas sspr() draws 
an arbitrary area from a sprite sheet 
at arbitrary scaling. The scaling func-
tion enables a number of tricks that are 
fairly costly on most classic hardware, 
such as Doom-type texture mapping.

The programmer may place draw-
ing commands in an endless loop, but 

a more elegant solution is to define a 
function called _draw() and call it at 
every screen refresh, i.e. 30 times per 
second. The earlier example would ap-
pear as follows:

FUNCTION _DRAW()
  PRINT "HELLO"
END

The game controller is read with the 
function btn() that accepts the button 
number as a parameter and returns 
whether the button is pressed. A pro-
gram that moves sprite number 0 to 
the left and right might look like this:

X=64
FUNCTION _DRAW()
  CLS()
  SPR(0,X,112)
  IF BTN(0) THEN X=X-1 END
  IF BTN(1) THEN X=X+1 END
END

In order to display anything on the 
screen, you of course need to draw 
something for sprite 0 in the sprite ed-
itor.

Sometimes, _draw() will contain so 
many tasks that it cannot be run at 
every screen refresh. In this case, the 
programmer should move the updat-
ing of the game state to the _update() 
function that is – theoretically – called 
30 times per second. Theoretically, 
because it is not a timer interrupt; if 
_draw() takes longer, it is called several 
times in a row.

Double-buffering is not a concern, 
as the changes to the video memory 
will only appear after _draw() has been 

The Pico-8 Zine is not as thick as Skrolli  
magazine, but it is also available as a print 
magazine as well as in PDF format.

Paniq from the group Duangle is one of the demosceners interested 
in the Pico.

Hyperspace by J-Fry demonstrates that the Pico-8 can also do smooth, 
textured 3D graphics. As a game, it is nothing special.
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completed. On the other hand, the 
user RAM could only fit a full-screen 
double buffer if some of the sound ef-
fects were cleared out of the way.

The sound side offers the functions 
sfx() and music(). The former plays the 
sound effect given as a parameter on 
the first available sound channel, the 
latter starts playing music from the 
pattern number given as a parameter.

Makers of small 2D games need not 
concern themselves with the speed of 
the commands, but it will become an 
issue when testing the limits of the 
platform. The function pset() refresh-
es all the pixels on the screen approxi-
mately one and a half times during one 
screen refresh. Writing directly into 
video memory with the poke() func-
tion is about three times faster. How-
ever, using the memcpy() and mem-
set() functions is up to ten times faster, 
and the background graphics drawing 
command map() is equally fast.

Blocks are fun to play with
Pico contains many features that are 
reminiscent of 1980s home comput-
ers. Instead of sticking to traditional 
or technological realism, it emphasises 
the fun of creating and block aesthet-
ics. Those who are bothered by this 
should consider the fantasy nature of 
the platform: fantasy worlds do not al-
ways make a lot of sense, but they pro-
vide the setting for interesting events 
and fuel the imagination.

If we had to summarise the spirit 
of the Pico-8 into one word, it would 

probably be ”straightforward”. Some 
of this stems from the 8-bit computers 
and their BASIC: you can start writ-
ing your program immediately after 
”powering on” and never need to think 
about OS requirements, APIs or differ-
ent execution environments. Things 
are simple and tangible: specific bits in 
a specific memory location will always 
mean a block of a specific colour in a 
specific place on the screen.

The concept goes further than that, 
however: there is no counting of clock 
cycles and raster lines, no colour cell 
boundaries, no juggling back and 
forth with utilities and files. The limits 
of the platform prevent arduous and 
time-consuming fine-tuning. 
Since there are no ad-
justable palettes, sample 
systems or machine code 
instructions, you do not 
need to tune them. And the 
small number of pixels en-
sures that not even a perfec-
tionist can spend very long with 
the anti-aliasing.

There are some technical challenges 
and brain puzzles on offer for those 
who desire them, but it is hard to im-
agine that success in the Pico-8 scene 
could ever require extreme attention 
to detail. Pico programs are easy and 
quick to write, and an author who is 
familiar with the basics of the platform 
can create a fairly polished game in a 
single evening.

At the time of writing this, the Pico 
is still an alpha version, and this is ap-

parent in some parts of the develop-
ment environment, at least. The code 
editor will not automatically skip to 
the line that contains an error and the 
keyboard cannot be used for drawing 
pixels. The software does not assist 
the user sufficiently; instead, the user 
needs to read separate documents and 
discover that the Esc key opens the ed-
itor, for example. The map editor can 
be initially frustrating, since it does not 
in any way indicate that the zero sprite 
is always empty in terms of the map.

Despite a few problems, we can rec-
ommend the Pico even to beginning 
programmers – at least those who are 

attracted to 8-bit block aesthetics 
and not afraid to read instruc-
tions from text files. Lua has 
no major drawbacks, and the 

simplicity of Pico’s interface 
encourages doing things 
yourself instead of looking 

for ready-made solutions. 
For the more experienced, 

Pico offers an easy and fun pas-
time, and the results are way above 
simple doodling with watercolours.

Community and creativity
The development of the Pico-8 was 
crowdfunded, which ensured a large 
group of enthusiastic fans already at 
the time of publication. At the time of 
writing, the forum of the developer, 
Lexaloffle Games, has over 250 car-
tridges with games and other software. 
A substantial portion of these are plat-
formers and other traditional 2D ac-

Lemmtris by Movax13h combines two classics to create a fine puzzle 
game.

Hybris by Benjamin Soulén is a Japanese-style shoot'em up that takes 
place inside the human body.
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Star Beast offers Wolfenstein-style perspective graphics.The Pico-8 demo Orbys by POD was succesful at Tokyo Demofest 2016.

tion games, but you can occasionally 
encounter some more experimental 
ones. There are even a few demoscene 
productions for the Pico.

The forum is the central community 
for developing and publishing on the 
Pico, and for the time being, at least, it 
has a very enthusiastic, warm and en-
couraging atmosphere. Beginners are 
also welcomed in a friendly and help-
ful manner. The Pico development 
team often participates in the discus-
sion, which also makes the forum the 
best place to ask about the Pico’s tech-
nical details.

Pico-8 also has its own fanzine, the 
Pico-8 Fanzine, which also receives 
input from Lexaloffle’s main develop-
er ”zep”. The creator of the indie plat-
former adventure VVVVVV, Terry 
Cavanagh, is one of the more famous 
writers. The fanzine is written by fans 
for fans, and three issues have been 
published at the time of writing. The 
zine contains instructions for making 
games, interviews, reviews and differ-
ent technical articles for Pico-8 pro-
gramming – and fan art, of course.

By now, many of our readers will 
surely be convinced that a software 
toy with such a warm-hearted spir-
it and an open development culture 
must be free and possibly even open 
source. This is not the case, however. 
The Pico-8 is a commercial product 
that currently costs around $20 to 
download. The binaries are available 
for the three most important x86 oper-
ating systems: Windows, Mac OS and 

Linux. Many have requested a physical 
Pico-8 console, but for the moment, it 
can only be implemented by using the 
runtime environment that can run the 
program binary.

Of course, the Pico is a simple plat-
form, which makes it easy to reverse 
engineer, and the Lua interpreter it 
uses is already open source. Howev-
er, the project is currently surrounded 
by such an aura of sympathy that not 
many hackers would have the audac-
ity to produce an open and free Pico 
variant. Instead, we can hope that 
Lexaloffle itself will release the source 
code for the Pico when the paying 
customers start losing interest. This 
would make the Pico an interesting 
niche option for game development, 
and perhaps even education, after the 
community wanes and active develop-
ment ceases.

The future of fantasy 
platforms
Fantasy consoles like the Pico-8 are a 
relatively new phenomenon. Although 
the Chip-8 virtual machine in 1970s 
hobbyist microcomputers can be con-
sidered its predecessor, and many edu-
cational software suites use simplified 
machines, the Pico is made exception-
al by its ”creativity first” approach. 
As such, its only predecessor is Lex-
aloffle’s earlier Voxatron fantasy con-
sole.

It is quite possible that even more 
small, easily approachable fantasy 
platforms will start to appear in the 

wake of the Pico. And the motive does 
not need to be related to competition 
or contrast – curiosity towards other 
options will suffice.

The Pico’s features encourage fun, 
cute and nostalgic creations, but a dif-
ferent selection of features could create 
an entirely different spirit and aesthet-
ic. For example, it would be fun to see 
an ”evil twin” of the Pico that empha-
sises the gloomy and rough corners 
of the universe of opportunities. Of 
course, this is a well-known phenom-
enon from the world of historical com-
puting platforms, but a subculture that 
creates experimental fantasy platforms 
might offer interesting laboratory con-
ditions for studying it.

Regardless of the future, the Pico-8 
remains an interesting development 
environment that offers a more casual 
alternative for the classic home com-
puters and consoles. It combines the 
inspiring 8-bit limitations with a mod-
ern design philosophy that emphasises 
ease of use and simplicity. Those who 
are even the least bit interested in cod-
ing and fascinated by large square pix-
els will find years of entertainment in 
the Pico. 
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Uskoisitko 

maailman kohtalon 

ilmanpaineanturin 

käsiin?

Doomsday
machines
Would you 
trust the fate of 
the world to a 
barometer?

It might be easy to forget this in 
a rush of nostalgia, but the 1980s 
were not only about moon boots, 

MacGyver and New Order. The threat 
of nuclear war between the United 

States and the Soviet Union was very 
real, in particular during the earlier 

part of the decade. And everyone 
knew what this would mean: the end 
of all life as we know it. This thought 

was not particularly comforting to 
1980s children, and we would have 

slept even worse had we known how 
close to global nuclear war the world 

actually came.
Story by Mikko Heinonen

Images by Manu Pärssinen,
Wikimedia Commons

Bizarre
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P aradoxically, both 
the U.S. and the 
USSR were simul-
taneously afraid 
of each other and 
convinced that 
their counterpar-

ty would never think that they were 
going to be the first ones to press The 
Button. NATO’s Able Archer 83 mil-
itary exercise was a culmination of 
this absurdity. The allies were training 
for a scenario where nuclear war had 
started, which led Soviet espionage to 
believe that they were using the exer-
cise as a cover-up to start a war. The 
agents were only asked to report their 
findings, not their conclusions – and 
chaos ensued since each one of them 
only saw a small part of the big picture. 
The situation was only defused when 
the exercise ended.

War on the big screen
The tension between the superpow-
ers naturally left its mark on popular 
culture. There were dark doomsday 
prophecies such as Testament, Threads 
and The Day After, but nuclear war was 
a mainstay in movies of all kinds. One 
of the more famous ones is 1983’s War-
games, where a young hacker called 
David (Matthew Broderick) acciden-
tally calls a computer that supervises 
nuclear weapons while searching for 

the latest games. Even though the film 
does cut some corners in traditional 
Hollywood fashion, it contains realis-
tic ways of discovering passwords, for 
example, and many have cited it as an 
influence for picking up computers as 
a hobby.

One of the main characters is an 
AI known as WOPR (War Operation 
Plan Response), developed by the fic-
tional Professor Falken (John Wood). 
It tries to simulate different types of 
conflicts from tic-tac-toe to World 
War III. WOPR is commissioned be-
cause the operators sitting in the silos 
are unwilling to launch their nuclear 
weapons despite receiving direct or-
ders. David accidentally sets the AI to 
simulate nuclear war, but the military 
command believes it has really started. 
WOPR also tries to launch the missiles 
autonomously until it reaches the re-
assuringly optimistic conclusion that 
the only winning move is not to play. It 
also becomes apparent that a machine’s 
judgment can fail even worse than that 
of a human’s.

Life imitating art
When viewed from the future, it seems 
that Wargames has more similarities 
with real life than the writers maybe 
even realised. The film was loosely 
based on an incident that took place 
in the early 1980s, during which the 

U.S. Air Force had already scrambled 
its nuclear bombers due to misleading 
information received from NORAD. 
The cause was not a hacker looking for 
computer games, but a computer stuck 
in ”war simulation” mode. The on-du-
ty personnel interpreted its messages 
as real. There had been at least two 
similar cases: one was due to human 
error, the other was caused by another 
malfunctioning computer. Even then, 
some branches of the military had not 
followed orders since they were sure 
that the alarm was false. By this time, 
the information had already reached 
everyone, which leads us to conclude 
that the risk of a nuclear holocaust was 
fairly low.

In September 1983, however, human 
logic helped to avoid the possibly se-
vere consequences on the other side of 
the Atlantic. Officer Stanislav Petrov 
was sitting in a control room and mon-
itoring signals from the Soviet missile 
warning system when he received a re-
port of a Minuteman missile targeted 
towards the Soviet Union. Petrov re-
viewed the information and acknowl-
edged it as a false alarm.

However, it did not take long before 
the system gave out another alarm; 
this time, there were four incoming 
missiles. Petrov reasoned that, in case 
of actual war, the United States would 
send hundreds of missiles instead of 
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only one. He switched off the alarm. 
This was a bold decision, but a correct 
one – it was later found that the device 
was malfunctioning. By disregarding 
the signal, Petrov might not have pre-
vented the actual end of the world, but 
he certainly did his part in avoiding a 
conflict. He was shunned for his ac-
tions by the Soviets, but later rose to 
Internet fame.

The most interesting – or horrifying, 
depending on how you think about it – 
fact is that persistent rumours suggest 
a type of WOPR still exists. However, it 
is located in the Kremlin, not NORAD.

From my cold, dead hands
Sistema Perimetr, known in the West 
as Dead Hand, was part of the USSR’s 
nuclear defence. Different sources 
offer inconsistent information con-
cerning the actual characteristics, ex-
istence and operability of the system, 
and in particular the amount of auto-
mation involved, but they all have the 
same basic idea. When operators re-
ceive reasonably reliable information 
regarding a nuclear attack, they can 
transfer the decision-making author-
ity to Perimetr. The system monitors 
changes in the ambient light level, ra-

diation level and air pressure, and, ac-
cording to some sources, also listens to 
signals from radio transmitters. It uses 
this information to determine whether 
it has been attacked. If this is the case, 
Perimetr will launch whatever is left of 
the nuclear arsenal.

The difference between Perimetr 
and the imaginary WOPR is that the 
former is designed purely for retal-
iation. At the same time, it is in fact 
designed to maintain peace, not to de-
stroy humanity. When the final deci-
sion on launching a nuclear attack can 
be transferred to a system that is, theo-
retically, incapable of error, no human 
needs to press the button. This avoids 
the possibility of one or more human 
errors resulting in nuclear holocaust. 
Perimetr ensured that, if the Soviet 
Union were subjected to a surprise nu-
clear attack, the attacker would also be 
destroyed. In part, this would reduce 
the types of misunderstandings that 
occurred during Able Archer.

It is difficult to find reliable infor-
mation on what Perimetr is actually 
like, which parts of it are operational 
and whether the system has ever been 
autonomous. A 2009 article by Wired 
magazine suggests that the system is 

continuously on stand-by and receives 
regular updates, but former Soviet gen-
erals say that it was never started. The 
reason behind the conflicting informa-
tion is obvious: the Kremlin does not 
mind if the rest of the world believes 
that Russia possesses a unique nuclear 
retaliation system. In the West, Russia 
is considered a force to be reckoned 
with, even if it is no longer the ”Empire 
of Evil” it once was. We may only know 
the truth after a long time, if even then.

But let us go back to Stanislav Petrov 
for a while. He acted as the interface 
between the machine and the physical 
environment and fulfilled his duties by 
dismissing the erroneous report. Who 
knows what would have happened if 
the seat had been occupied by Perimetr 
instead of Petrov. Perimetr’s designers 
were undoubtedly aware of this, and 
it is hard to believe that anyone would 
have trusted an arsenal of the deadliest 
weapons to technology that is known 
to be unreliable. A more likely scenar-
io is that the actual production system 
would have included its own Petrovs 
sitting in underground silos.

From master to servant
Despite the recent downturn in the re-
lationship between Russia and the rest 
of the world, global nuclear war is, for-
tunately, still a fairly distant possibility. 
Nobody would seriously suggest using 
”infallible” computers to control nucle-
ar missiles.

However, there are still more than 
enough nuclear weapons in the world, 
and computers are related to them 
more closely than ever. Since nuclear 
tests are no longer being performed, 
there is even more demand for mod-
elling and calculation in weapon de-
velopment. Control systems have also 
improved continuously. 

When DEC introduced its 64-bit 
Alpha processor in the early 1990s, it 
had very modest software support. Evil 
rumours suggested that this was not a 
concern for Digital Equipment Corpo-
ration, since a cruise missile does not 
need a graphical user interface. While 
this was mostly unfounded specula-
tion, the fact is that one of the largest 
Alpha based supercomputers was con-
structed at the turn of the millennium 
at Los Alamos laboratory – the very 
same one that developed the world’s 
first nuclear weapons. 
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S krolli magazine is preserving 
nine minuscule programs 
for future generations as QR 
codes – two games and seven 

demos. Although one code can store 
up to three kilobytes, the programs 
printed here are at most 256 bytes in 
length. Since this is a somewhat un-
orthodox use of QR codes, getting the 
software to run might prove somewhat 

challenging. We encourage you to ex-
periment with them!

With the exception of one, all the 
programs are designed for MS-DOS. 
Read the QR code and store its raw text 
data in a .COM file. Then, use either a 
real PC or an emulator to run the file. 
The visually complex programs re-
quire more power than a typical DOS 
computer has – using the DOSBox 

emulator’s turbo mode (Alt+F12) is 
recommended.

One of the demos is a piece of Ja-
vaScript that may even run on some 
hardware with no modifications. It is 
nothing special and is mainly intend-
ed as a proof of concept. The amount 
of framework code makes JavaScript 
a less suitable platform for extremely 
small programs than MS-DOS. 

256-byte programs
These days, QR codes can be found everywhere. They are commonly used to store web 
addresses, but can just as well be used for any data – such as executable code.
Story by Ville-Matias Heikkilä

4is256 (Řrřola, 2007) – A Tetris clone. Con-
trol with Shift, Ctrl and Alt.

Boulder Dash in 256 bytes (James David 
Chapman, 1995) – A rudimentary version of 
a classic game. Find the exit and beware of 
the falling rocks!

Searchlight (Wamma, 2007) – A raycast cata-
comb with columns that cast shadows.

Bump is Possible (Downtown, 1999)
– A rotating concrete torus.

Dírojed (Řrřola, 2007)
– Psychedelic feedback in 32 bytes.

JavaScript test demo (Skrolli, 2013)
– A simple canvas effect that our readers can 
improve on!

Puls (Řrřola, 2009) – Animated machinery 
built with raymarching.

Sqwerz3 (Trimaje, 1996)
 – Rotation among multi-coloured squares.

Tube (3SC, 2001) – A freely rotating camera 
inside a spiral tunnel.

Art pages
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T he Soviet Union pio-
neered many great ad-
vances in the fields of 
science and technology. 
It was the first nation to 

send a satellite into orbit, the first na-
tion to send a human into space, and 
the first nation to set up a long-lasting 
space station. The USSR put heavy em-
phasis on scientific and technological 
research, which made it a commenda-
ble adversary to the Western world.

It entered the development of com-
puter technology at the turn of the 

1950s. The first programmable elec-
tronic computer in Continental Europe 
was the MESM (Малая Электронно-
Счетная Машина), built during 
1948–1950 and commissioned in 1950. 
The military industry was already us-
ing electronic calculator applications 
and analogue computers, but the age 
of the digital computer started with 
MESM. It consisted of 6,000 electron 
tubes and consumed 24 kW of electric-
ity. It could perform approximately 50 
calculations per second and it was used 
in top-secret nuclear weapons projects. 

Setun
There were many innovations during 
the early stages of Eastern Bloc com-
puting. One of the most eccentric ma-
chines was the Setun (Сетунь) that 
was built for research use at Moscow 
State University in 1958. Instead of the 
regular binary system, it used what is 
known as a balanced ternary system. 
This system includes minus one in ad-
dition to zero and one.

The Setun was a technological suc-
cess. This was attributed in particular 
to the ternary system. It proved to be 

History

History of Soviet and Eastern Bloc computers
In order to make the most out of this voyage through the history of computing in this great nation that is no 
more, we recommend that you play the Soviet national anthem in the background. Full volume is preferable. 
Story by Jari Jaanto, Ville-Matias Heikkilä  Images by Sächsische Landesbibliothek, Andrei Kulikov, Wikimedia Com-
mons (Panther, Konstantin Lanzet, Pereslavskaja pedelja, NZeemin, Arseni Gordin, SysCat, Andrew Butko)

Setun.

-6 1010 -+0

-5 1011 -++

-4 1100 0--

-3 1101 0-0

-2 1110 0-+

-1 1111 00-

 0 0000 000

+1 0001 00+

+2 0010 0+-

+3 0011 0+0

+4 0100 0++

+5 0101 +--

+6 0110 +-0

Numbers from -6 to +6 in deci-
mal, binary and balanced ternary.

ES-1035, an ES EVM series computer, in use in East Germany.
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reliable and stable at different tem-
peratures and supply voltages, and it 
was simple to construct and operate. 
Approximately 50 units were built by 
1965. Although the Setun also gath-
ered interest in the Western world, the 
decision-makers considered it too ec-
centric for the planned economy and 
the project was suspended. The Setun 
at Moscow State University was re-
placed with an equally powerful binary 
computer, but the operating costs of 
the new system multiplied.

In 1970, the Setun received a suc-
cessor called Setun-70. It was pro-
grammed using the DSSP language 
that was reminiscent of Forth. The Se-
tun and Setun-70 were the world’s only 
ternary computers.

Argon-16
In the 1960s, development was divid-
ed into civilian and military branch-
es, and space computing was a part of 
the latter. Fighter jets, spaceships and 
surveillance posts needed light, fail-
ure-tolerant control computers, and 
these could be found in the Argon 
range. The most famous of the series is 
the Argon-16 (Аргон-16). It was used 
in all the Soyuz and Progress space-
ships and for 37 years at the Saljut, Al-
maz and Mir space stations. The ma-
chine never failed, which makes it the 
most reliable computer model used in 

space. It is also the computer with the 
longest service record in space.

The Argon-16 went into production 
in 1974. All of its components, includ-
ing memory, had triple redundancies 
that all worked at the same time. The 
main design criteria for the computer 
were reliability and real-time cooper-
ation with the other equipment of the 
spaceship.

Since 2010, Soyuz spacecraft have 
used a new control computer called 
TsVM-101 (ЦВМ-101) in place of the 
Argon.

Copying Western computers
In 1966, the financial planners sug-
gested developing a series of comput-
ers that would include models with 
different hardware designs but com-
patible software. This created the uni-
fied system for electronic computers, 
ES EVM (ЕС ЭВМ), which went into 
production in 1972. Computers in this 
series were manufactured in the Soviet 
Union as well as in the other social-
ist countries, and they even outlasted 
the collapse of the Soviet Union itself, 
since the final models were produced 
in 1998.

The unified system allowed compat-
ibility with Western computers for the 
first time. Although there were compe-
tent Soviet hardware designs available, 
the system was built on the American 

IBM S/360. IBM did not mind this and 
entered into cooperation negotiations 
with the Soviet Union; however, they 
ended in 1979 due to the United States’ 
economic sanctions.

Other computer series based on 

This Soyuz flight would not have succeeded 
without the Argon control computer.

Ural-1, high-end Soviet computing from the 1950s.
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Western technology were the SM EVM 
(PDP-11 and VAX) and, in the 1980s, 
the ES PEVM (IBM PC). In addition 
to these central product lines, oth-
er devices, such as the Apple II, Oric 
and ZX Spectrum, were also cloned. 
Cloning the Intel 8080 processor made 
it possible to build CP/M compatible 
computers. The Cray-1 supercomputer 
was also successfully cloned in the late 
1980s.

Microcomputers
When Intel introduced the world’s first 
microprocessor in 1971, the Soviet Un-
ion was not yet far behind: The K145IP1 
processor was developed in 1973 and 
the first pocket calculators using it were 
introduced to the market in 1974. Al-
though the politburo emphasised the 
production of pocket calculators, it was 
not interested in personal computers 
which started gaining popularity in the 
West in the late 1970s. The country was 
going through financial difficulty and 
could not even meet the growing de-
mand for computers in its research and 
production facilities. Starting in 1980, 

the neighbouring country Bulgaria 
produced Apple II compatible Pravetz 
computers for educational use, but pro-
duction figures were initially low. Since 
CoCom, led by the United States, had 
imposed an export ban on high tech-
nology, the only options available to 
regular Soviet citizens in the late 1980s 
were DIY and smuggling.

In 1982, the hobbyist magazine Ra-
dio (Радио) published assembly in-
structions for a computer known as 
Mikro-80 (Микро-80). The computer 
used Soviet K580 series processors that 
were copies of the Intel 8080. It had 64 
kilobytes of memory and the only dis-
play mode was a text mode with 64×32 
characters. The computer had over 200 
parts, which is why only a few were 
ever built by hobbyists. Sourcing parts 
was difficult and could only realistical-
ly take place through the black market. 
A simplified version of the Mikro-80, 
the Radio 86RK (Радио 86РК), was re-
leased in 1986. The computer had been 
reduced to 29 components. The pro-
cessor and text mode were the same 
as before, but memory had been cut to 

16–32 kilobytes. The machine gained 
some popularity among hobbyist cir-
cles and inspired several variations. It 
also saw several add-ons, such as an 
accessory that could display graphics.

In the same year as when the 
Mikro-80 was released, the Soviet 
Ministry of Radio Industry also in-
troduced an Apple II clone known as 
the Agat-4. Whereas the Bulgarian Ap-
ple clones used their own clone of the 
6502 (the CM630), the Soviet models 
replaced it with an interesting simu-
lation arrangement. The production 
batch in 1984 was very small and only 
the later versions, Agat-7 and Agat-9, 
spread into mass production. Apple II 
compatibility improved with the new 
models. The Agat was popular in edu-
cation, but hobbyists never received it 
in large quantities.

Western computers were not as dif-
ficult to purchase in all Eastern Bloc 
countries as they were in the Soviet 
Union. Black market Commodore 64s 
were fairly popular in Poland, Yugosla-
via and East Germany but completely 
unheard of in the Soviet Union. The 
only capitalist home computer official-
ly sold to the Soviet Union appears to 
be the MSX which Yamaha sold for use 
in teaching.

Elektronika
In the West, the PDP-11 instruction set 
was solely used for machines the size 
of refrigerators; in the Soviet Union, 
however, it was a very popular choice 
and used in smaller devices and em-
bedded systems, right up to satellites 
and graphing calculators. The small 
PDP-11 compatibles used the same 
Elektronika (Электроника) product 
name as the pocket calculators. The 
Elektronika models 60, 85 and DVK 
were designed for terminal and work-
station use. The model 60 is known as 
the computer that was used to write the 
original Tetris. The workstation range 
was also used as the basis for the first 
official Soviet home computer, the Ele-
ktronika BK (БК). The BK was mainly 
intended for use in schools, but it was 
the first computer that Soviet citizens 
could officially purchase for the home.

The first BK series computer, the 
BK-0010, went into production in 
1985. Its processor, the K1801VM1, 
was 16-bit in accordance with the 
PDP-11 architecture and operated at 

Elektronika 60M.

BK-0011M.
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a clock frequency of 3 MHz. It had 
32 kilobytes of RAM. There were two 
display modes: 512×256 with two col-
ours and 256×256 with four colours. 
These modes were also used to simu-
late 64×25 and 32×25 pixel text modes. 
The machine shipped with the FOCAL 
programming language and a BASIC 
interpreter was optional.

The BK-0010 received an improved 
version, the BK-0010.01, which had a 
typewriter keyboard in place of the old 
numb keypad. It also had the BASIC 
interpreter in ROM. The BK-0010Š 
was released for schools, and it includ-
ed a monitor and networking function-
ality. The BK-0011M, released in 1989, 
upped the clock frequency to 4 MHz 
and the RAM to 128 kilobytes. Graph-
ics were also improved: previously, the 
only colours on offer had been black, 
red, green and blue, but now there was 
a choice of 15 other four-colour pal-
ettes.

In the 1990s, users of the BK-0011M 
fitted the machines with AY sound 
chips and controllers for disk drives 
and hard drives. BK demos started ap-
pearing with the rise of the Spectrum 
demoscene.

Other computers
The UKNC (УКНЦ) computer intro-
duced in 1987 could be called the So-
viet Amiga in terms of its appearance 
and inner workings. The UKNC had 
two PDP-11 compatible K1801VM2 
processors, one of which acted as the 
graphics processing unit and auxilia-
ry processor. The main processor had 
a clock frequency of 8 MHz, the ma-
chine had 192 kilobytes of RAM and 
the graphics mode offered 8 colours at 
a resolution of 640×288 pixels.

However, the ”Soviet Amiga” is by-
passed in terms of its multimedia fea-
tures by the Vektor-06C (Вектор-06Ц), 
which was an 8-bit home computer 
developed in the same year. While oth-
er Soviet computers only used beep 
sounds, the Vektor had a dedicated 
clone of the Intel 8253 counter chip 
for sound. It offered three square wave 
channels. The total colour palette was 
an impressive 256 colours, of which 16 
at a time could be used in the 256×256 
pixel graphics mode. The bottleneck of 
the system was its main CPU, a clone 
of the 8080 that could not refresh the 
display quickly enough at a clock fre-
quency of 3 MHz. The computer had 

64 kilobytes of RAM, half of which was 
video RAM. The device was fairly pop-
ular and a lot of games were made for it.

While on the topic of Soviet infor-
mation technology, we must not forget 
pocket calculators. Some of them were 
also sold in Finland through the Teboil 
chain of service stations. There were 
countless models of calculators, from 
simple standard models to program-
mable graphing calculators, the finest 
of which was the restrictively expen-
sive Elektronika MK-90. The MK-90 
had a 160×64 pixel liquid crystal dis-
play, a BASIC interpreter and a PDP-
11 compatible processor. The clock 
frequency had to be kept low, which 
made the device operate slowly. The 
calculator shipped with an empty stor-
age module and a ROM module that 
contained Tetris, a clone of Pac-Man 
and a chess game, among other things.

The socialist bloc also produced 
electronics solely designed for gaming. 
The Soviet system churned out hand-
held electronic games, most of which 
were direct copies of Nintendo’s Game 
& Watch games, and coin-operated 
arcade games. Most arcade games had 
gigantic pixels and very modest tech-

”Soviet Amiga” UKNC or MS-0511.

The control unit of an ES-1052.

Nu, Pogodi! handheld game.Pocket computer Elektronika MK-90.
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nology, but some were surprisingly ad-
vanced. The TIA-MC-1 hardware had 
256 colours and sprites, among other 
things.

Out of the larger computers, we 
should mention the Elbrus series that 
started in the 1970s. It includes mul-
tiprocessor supercomputers that were 
used for space and nuclear research. 
The developer of these machines, Bo-
ris Babaian, has been called the Sey-
mour Cray of the Soviet Union.

Cloned 8-bits
Although the Soviet Union and the 
Eastern Bloc did produce many origi-
nal computers, the most popular home 
micros were copies of the British ZX 
Spectrum. Spectrum was the ideal ma-
chine for cloning. Its small size made 
it simple to smuggle across borders, 
and technological simplicity made it 
simple to reverse engineer and manu-
facture. The first Soviet Spectrum was 

built in 1985, and by the early 1990s, 
nearly all of the larger Soviet cities had 
Spectrum manufacturers. Some of the 
Spectrum clones became much more 
sophisticated than the machines they 
were based on.

Although the Spectrum was by far 
the most popular 8-bit computer in 
the socialist countries, other 8-bits 
were also being cloned. The Agat and 
Pravetz, mentioned earlier, were Apple 
II clones, except for Pravetz 8D, which 
was an Oric clone. In Yugoslavia, a 
ZX81 clone called Galaksija was intro-
duced already in 1983; it utilised Z80 
processors imported from the West. 
NES consoles have been cloned in Chi-
na since the late 1980s, and some of 
them ended up on the Soviet and East-
ern European markets.

Hobbyist culture
It was typical of the Soviet computer 
industry that software production was 
omitted in the five-year plans. Hobby-
ists and professional users alike had to 
write their software from scratch and 
perform different hardware modifi-
cations. This created a strong maker 
culture and a black economy that can 
be compared to the uncommercial na-
ture of Western hacker cultures. While 
software production was big business 
in the capitalist countries and copying 
mainly took place at universities and in 
hobbyist circles, the opposite was true 
in the socialist countries. Software pi-
racy was the generally accepted norm 
and money only exchanged hands in 
the hobbyist circles and on the black 
market.

Games and software for the BK com-
puter, in particular, typically contain 
a start screen that can be compared 
to the crack intros by Western pirate 
groups. This screen introduces the 
author or distributor of the software, 
advertises other games on sale and 
provides a phone number for further 
information. There was a large amount 
of unofficial software production for 

the BK. Hobbyists converted both 
Western software and software from 
other Soviet computers and produced 
a number of games.

The first demos from the socialist 
countries were made in Poland and 
Czechoslovakia for the Spectrum, 
from where the phenomenon migrated 
to the Soviet Union through the soft-
ware piracy networks. During the ini-
tial stages, Eastern Bloc demo authors 
had no knowledge of the existence of 
the Western demoscene. They started 
writing demos purely from their own 
perspective. The Soviet hobbyists en-
countered the Western demoscene for 
the first time through Amiga demos, 
even though none of them had Ami-
gas. Demos spread as copies of copies 
of VHS tapes, and Spectrum hobbyists 
used them for inspiration. A few dem-
os contained the phrase ”Amiga rules!” 
even though none of the authors had 
ever seen a real Amiga.

The demoscenes of the East and 
West only discovered each other years 
after the collapse of the Soviet Union, 
in the latter half of the 1990s, when the 
”ex-USSR” demo culture stabilised and 
the arranging of regular, larger demo 
events started. At this time, the main 
platform for Eastern Bloc demos be-
came the Spectrum clone Pentagon 
128 that is still the de facto standard 
for Russian Spectrum demos.

Summary
Soviet era home computers typically 
had a Western clone processor, but the 
rest of their technology was original. 
Depending on the time and manner of 
calculation, technology was 5–10 years 
behind Western hardware. Building 
computers yourself, which was typical 
of early 1970s microcomputer culture, 
was still common in the Soviet Union 
in the latter half of the 1980s. Software 
and peripherals were not sold and had 
to be built by the hobbyists themselves. 
The Soviet era had a strong DIY cul-
ture that still lives on! 

These Bulgarian Apple clones appear to work 
fine in a school in Pereslavl in 1985, but is the 
heating working?

KP580BM80 (= Intel i8080).

K1801BM1.

T34BM1 (= Zilog Z80).

KM1801BM3 (KM1801WM3).

•	 MESM: http://www.engadget.com/2011/12/26/mesm-soviet-computer-project-marks-
60-years/

•	 Setun: http://en.wikipedia.org/wiki/Setun 
•	 Moscow State University: http://hpc.msu.ru/?q=node/57
•	 Setun-70: http://ternary.3neko.ru/setun70.html
•	 Agat: http://en.wikipedia.org/wiki/Agat_computer
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http://ternary.3neko.ru/setun70.html
http://wikipedia-agat
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Column

We upgraded your 
device, it’s ruined!
Any love for an outdated android?
Story by Mikko Heinonen

I keep an Android tablet on my 
bedside table and use it to view 
online content before going 

to sleep. A Google Nexus 7 (2012) 
worked fine for this purpose for about 
two years.

All the software I needed worked 
nicely, until Google updated the device 
with Android 5.0. Upon first start-up, 
it was clear that the new OS alone was 
eating the resources of my humble tab-
let. Moving between applications was 
sluggish and video playback, in par-
ticular, slowed down to a crawl.

When I brought this up with an An-
droid veteran, the response was clear: 
it’s all your fault; you should have 
never upgraded. Owners of old de-
vices should have stuck with the old 
version, which also uses up less of the 
resources. However, this is problematic 
because Android also has its share of 
security vulnerabilities, and I some-
times use the same tablet to book tick-
ets while travelling, for example. I want 
to ensure that the security of the device 
is as up to date as possible – and, going 
forward, these fixes will only be availa-
ble for the latest version.

Well, at least somebody cares
At the same time, I realise that I am 
fortunate. Google is interested in pro-
viding new software versions for its 
reference devices even after they are 
two years old. At home, we also have 
a newer, cheap Chinese tablet that has 
received exactly zero OS updates dur-
ing the last year. From now on, it will 
need to rely on community-built cus-
tom ROMs.

Even larger manufacturers tend to 
abandon their devices early, however. 

A year ago, factory refurbished iPhone 
4s were offered very cheaply and peo-
ple everywhere rushed to get them. 
Not many of them considered the fact 
that their newly purchased phone had 
at least one serious vulnerability that 
Apple has no intention of ever fixing. 
The phone is five years old and thus 
considered an end-of-life product that 
receives no new OS versions.

A change is coming
The end of support for Windows XP 
was also a hot topic a while ago. The 
old workhorse was finally taken off 
life support after 13 years, and it is 
still dearly missed by many. There are 
still millions of active XP installations, 
many of which will, no doubt, cause all 
sorts of joy to their owners and net-
work operators, among others.

Updating XP was expensive for Mi-
crosoft. Buying a cheap OEM licence 
in 2001 entitled you to a decade of free 
updates. The new versions were not 
radically different, which made XP too 
popular for it to be simply discontin-
ued. The support for Windows 7 was 
also extended until 2020, since the 
transfer from XP to 7 started late.

This is clearly a problem that Mi-
crosoft aims to avoid with Windows 
10. Offering the upgrade for free is 
designed to lure users towards the lat-
est version and to relieve the historical 
burden. They are clearly borrowing 
pages from their opponent’s playbook, 
since Apple has already been distrib-
uting free OS X updates for a longer 
time. The only difference is that you 
can only run OS X on Apple hardware 
(without resorting to dirty tricks, that 
is). Microsoft needs to offset the differ-
ence with advertising income.

Sour Apples
A few months ago, a relative of mine 
asked me to take a look at her old 

MacBook. It was maybe 6–7 years old, 
but still mechanically intact and suffi-
cient for her purposes. Unfortunately, 
though, the integrated display adapter 
was so old that a new version of OS X 
would not run. This, in turn, prevent-
ed the installation of later software ver-
sions. The reality was that, in order to 
run modern software, she either need-
ed to switch to an open source OS or 
head to the store.

Another friend of mine managed to 
upgrade the OS on her old Mac, but 
the end result was a complete loss of 
performance. After a few weeks, she 
grew tired of waiting and bought a new 
one. That is also what I did with my 
sluggish tablet.

Walking time bombs
Offering the latest update for free is 
a handy way for manufacturers to re-
duce their duties. There will be no 
need to fix ancient OS versions when 
everyone is offered the latest edition. 
After this, they only need to decide 
which hardware to make obsolete dur-
ing each round.

Owners of old devices can appreci-
ate the idea of a new operating system 
– until they realise that they are actu-
ally faced with an unpleasant choice: 
should they accept the vulnerabilities 
and other issues or slow their device to 
a crawl?

This decision is easy to make as long 
as the consumers can afford to – and 
can be bothered to – update their hard-
ware every two years or so. However, 
this is not even nearly always the case, 
and even the old devices are usually 
sold or handed down to someone. The 
world is full of yesterday’s hardware 
that receives no software updates. Usu-
ally, an average user cannot understand 
why they should replace a working PC 
or phone that still serves its purpose. 
Or why they should look into GNU/
Linux at the latest when the hardware 
starts to show signs of ageing.

After all, it is true that Windows XP 
can still be used to view news on the 
Internet. A phone with an old version 
of Android or iOS will still work when 
making calls or posting on Facebook. 
This becomes a problem, however, 
when millions of these walking dead 
are connected to the Internet. The cre-
ation of a zombie army is only one ma-
jor vulnerability away. 



Abandonware
– the controversial software graveyard
What is abandonware? Who abandons software and why? What makes one person’s trash 
another person’s treasure?
Story by Mikko Heinonen, Kalle Viiri  Image by Tapio Lehtimäki
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Games

A bandonware refers to 
commercial software 
whose copyright is 
not being actively en-
forced. In many cases, 

the software has not been commer-
cially available for years. The publisher 
may have gone out of business entirely 
or switched the focus of its business, or 
the software may have been published 
for a device that is no longer common-
ly used. While the software is still tech-
nically subject to copyright, no-one is 
enforcing it.

Since the amount of available soft-
ware is enormous and continuously 
growing, this graveyard has a constant 
supply of cadavers. Some of them will 

later rise from their graves, but many 
remain in limbo forever.

Players first
Games are the best-known and most 
popular form of abandonware. This is 
due to a number of reasons. The num-
ber of games being published is huge, 
which results in a higher rate of aban-
donment. Games are usually made 
with small budgets and the studios cre-
ating them are often short-lived. Fur-
thermore, productivity software usu-
ally develops in a manner that makes 
older versions obsolete.

Games, however, behave differently. 
Their changes are commonly related 
to the technical implementation. Many 

old games have features that players 
keep coming back to even after sever-
al years. Players also commonly have 
a strong sense of nostalgia towards 
games from their childhood.

Like all other software, games have 
been copied and distributed for as long 
as they have existed. The concept of 
abandonware, however, can be seen to 
have been brought about by the emer-
gence of the World Wide Web, since 
it allowed for offering entire, curated 
collections of abandoned games and 
their descriptions. Many games were 
already fairly old by the time WWW 
came around.

It is no wonder, then, that the In-
ternet is full of sites that offer classic 
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games and other software for down-
load. They all operate on more or less 
the same principle: the software is 
made available because the webmas-
ters believe that the copyright holders 
have lost interest in it. Some sites play 
it safe and remove the download links 
when the software becomes available 
again. Copyright holders are also en-
couraged to request the removal of any 
downloads. While these disclaimers 
do not really hold water in legal terms, 
many of these sites have been allowed 
to operate for years with no major legal 
repercussions.

Grey areas
In a way, abandonware only exists until 
someone makes a decision on the fate of 
the software. If the copyright holder de-
cides that they have no more interest in 
the software, it becomes either freeware 
or, in the best case, completely open 
source. In the latter case, it falls below 
one of the many open source licences.

id Software, for example, has re-
leased the source code for many of its 
games and game engines, while retain-
ing the rights to the rest of the game 
data. Similar examples can be found 
from the field of productivity software, 
as well. Many other developers, such as 
Mr. Chip (Magnetic Fields) who were 
behind the successful Kikstart motor-
cycle game, have released the binaries 
of their old products on the condition 
that no profit is made from their sales. 
Others, such as Cinemaware, the de-
veloper of interactive movies, have 
been distributing emulated versions 
of their own games in order to create 
traffic for their website and, as a result, 
generate interest towards their new 
products.

But there are opposite examples, as 
well. Some publishers have made it a 
policy to keep a firm grip on their intel-
lectual property. Nintendo, in particu-
lar, is known as a watchful guardian 
of its rights. This is, of course, related 

to the fact that Nintendo continues to 
offer its old titles for purchase to the 
owners of its latest gaming devices. Its 
lawyers have shut down several sites 
distributing the adventures of Mario 
and his pals for free. This has resulted 
in the addition of a specific ”non-Nin-
tendo clause” on some abandonware 
sites. Naturally, this has done little to 
prevent the online distribution of these 
games, since new sites are born as 
soon as others are closed. Distribution 
has also shifted from WWW towards 
peer-to-peer networks that are more 
difficult to trace.

Rise from your grave 
and make money!
Not every game is forgotten forever. 
Different people have gone to great 
lengths to locate the publishers of clas-
sic games and ask for permission to 
publish them – or even to acquire the 
publication rights. Street Rod, a clas-
sic car tuning simulator, is now legally 
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available for free download thanks to 
the efforts of a private individual. The 
rights to the games of the ancient In-
tellivision game console are held by 
Intellivision Lives!, a company set up 
by hobbyists. They have even released 
a compilation disc that works on Win-
dows. And there are countless similar 
examples.

GOG.com, previously known as 
Good Old Games, was established in 
2008, and it is probably the best-or-
ganised reseller of old games. Its orig-
inal business idea was to locate the 
copyright holders of old games, sign 
distribution agreements with them, 
and republish games on their own dig-
ital distribution channel after adapting 
them to the latest hardware. The de-
velopment of the open source DOS-

box emulator was highly beneficial to 
GOG in this respect. Later, they also 
expanded to newer games.

GOG.com offers over one hundred 
games that were released before 1995. 
This is a good selection of early DOS 
classics, and making the games avail-
able for only a few dollars has made 
them a feasible alternative to illegal 
downloads. Furthermore, since GOG 
publishes the games without any form 
of copy protection, it is completely 
possible to extract the original game 
files from the package and play the 
GOG version on a real DOS computer.

Commercial nostalgia trips are also 
available for other popular platforms, 
such as the Commodore 64 and Ami-
ga. A company called Cloanto offers 
the commercial products Amiga For-

ever and C64 Forever, which include a 
licence for the ROM files of the origi-
nal computer and a selection of games. 
Nevertheless, a nearly complete, care-
fully curated library of games for both 
systems has been readily available on-
line for a number of years, and nobody 
seems to mind.

However, the field of abandonware 
also has its share of shadier entrepre-
neurs. Chinese online shops common-
ly offer devices that can emulate a va-
riety of 8-bit and 16-bit game consoles. 
Very often, they also ”accidentally” 
contain commercial ROM files from 
these systems; at worst, this is even list-
ed as a feature on the packaging. The 
original copyright holders were not 
consulted, of course.

Preserving culture
Sites distributing abandonware have 
reunited countless players with their 
childhood favourites, but they also 
serve a nobler purpose. The preser-
vation of digital software is far from 
systematic, and even the original au-
thors no longer have copies of some 
software. And since many publishers 
who are active today have admitted 
that their archives have been lost a long 
time ago, what can we expect from 
those who went out of business? Very 
often, research into the early stages of 
gaming history has utilised disk images 
and box scans found online. What was 
originally a form of piracy has become 
the preservation of cultural history.

Writing emulators, which are es-

http://GOG.com
http://GOG.com
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sential for the preservation of history, 
would also be substantially more dif-
ficult without an enormous, readily 
available library of software. Game 
programmers, in particular, were no-
torious for utilising every available 
quirk in the hardware, and emulators 
that only rely on the official documen-
tation will not operate correctly under 
all conditions. A large amount of dif-
ferent software is required in order to 
ensure the functionality.

The graveyard needs 
a rulebook
Abandonware is an unclear concept. 
At the moment, anyone can distribute 
any software they like and claim that it 
has been abandoned. In practice, the 
person downloading it is responsible 
for determining whether the site is au-
thorised to distribute the files. There 
have even been cases of fraudulent li-
cence terms. A version of DOS is in 
circulation that calls itself MS-DOS 
7.1. It has been extracted from Win-
dows 98 and the text of the GNU GPL 
has been appended to it. Microsoft 
has not released the source code for 
DOS 7.1 and does not appear to have 
any intention of doing so in the near 
future.

In 2013, an initiative was launched 
on the Finnish Citizen’s Initiatives ser-
vice for limiting the duration of cop-
yright for digital software unless the 
publisher requests an extension for 
it. The rationale for the initiative was 
similar to that used in abandonware: 
software that is over twenty years old 
is commercially feasible only in very 
rare cases. The initiative did not even 
come close to gathering the necessary 
number of signatures, and EU legisla-
tion as well as international copyright 

agreements would have made it nearly 
impossible to enact in any case.

The matter is too important to ig-
nore, however. At the moment, years of 
software preservation can be lost in an 
instant if a copyright holder decides to 
shut the operation down after remain-
ing passive for a long period of time. 
In practice, the preservation of digital 
culture currently relies on benevolent 
software pirates, publishers releasing 
their work to the public and vague 
concepts such as abandonware. 
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History

Machines talking 
on the phone
The construction of electronic data 
networks started in the 19th century, 
and one of them eventually reached 
nearly every home. This was, of course, 
the telephone network. Finns were en-
thusiastic about building networks 
from the start: By the 1890s, Helsinki 
had several telephones per one hun-
dred residents, which was one of the 
highest ratios in the entire world.

The telephone network was also an 
attractive option for relaying other in-
formation in addition to speech. News 
agencies had to send a lot of informa-
tion to each other quickly, and this 
was done by using teletypes, which 
were a type of remotely operated elec-
tronic typewriter. Teletypes had their 
own Telex network, but the telephone 
network reached further and was, in 
most cases, cheaper to use. You only 
needed a modulator/demodulator, or 
”modem” for short, between the tel-
etype and the phone line in order to 
convert the character data to different 

tones and back again. The first phone 
line modems were taken into use in the 
1940s, which means that the technol-
ogy for connecting computers to the 
telephone network pre-dated the com-
puters themselves.

The first widespread computer net-
work was SAGE (Semi-Automatic 
Ground Environment), commissioned 
by the United States military in 1958. 
It mainly relied on regular phone 
lines and modems for communica-
tion. Banks were early adopters of this 
technology on the civilian front; their 
central computers called each other in 
order to exchange transaction infor-
mation.

Goodbye to punch cards
During their first decades, computers 
were large and expensive, and very few 
people were able to use them person-
ally. Users planned their software on 
paper, punched them on punch cards, 
delivered the piles of cards to the ma-
chine room where they were run in 
batches, and later received the output. 

The means of operation changed dra-
matically with the introduction of ter-
minals. Timesharing meant that sever-
al users controlled the same mainframe 
simultaneously from different termi-
nals and received nearly instantaneous 
responses. The terminals were often 
connected with modems, which al-
lowed the user to reside in a different 
city than the computer itself.

Technology hobbyists were also in-
terested in computers, terminals and 
modems, and many of them built them 
by themselves. This allowed students 
who were technically inclined to use 
the mainframe from home. Before 
long, they also started thinking of 
turning their home computer into a 
”mainframe” that others could connect 
to.

Ward Christensen and Randy Suess 
from Chicago were the first ones to 
set up a public BBS for hobbyists. The 
year was 1978. The system was sim-
ply known as CBBS (Computerized 
Bulletin Board System) and it ran on 
an Altair compatible. The first similar 

Internets before the Internet
– the rise and fall of modem BBSes
Finland has been connected to the Internet for over 25 years. However, computers were already talking 
to each other long before this, and it took years for the Internet to supersede the other networks.
Story by Ville-Matias Heikkilä  Images by Manu Pärssinen, Ville-Matias Heikkilä, Wikimedia Commons
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system in Finland was set up in 1982 
by Seppo Uusitupa and it was known 
as CBBS Helsinki.

How BBSes operated
In the 1980s, BBSes were also referred 
to as electronic mailboxes. During 
their golden age, it was difficult to ex-
plain their operation – and inherent 
charm – to someone who had never 
used one, but today, we can compare 
them to a website.

Imagine a site with a discussion fo-
rum. The forum has dozens of users 
who discuss every imaginable topic. In 
addition to the forum, the site has an 
area where you can download software 
and other files or upload your own 
files. There is also a dedicated section 
where you can play games against oth-
er users. You log in with a username 
and password, and in order to receive 
them, you need to answer a few ques-
tions – mostly regarding your personal 

information.
Most Internet users can easily im-

agine a site like this. Now, imagine that 
the site is only accessible to one person 
at a time. When you try to access it, it is 
most likely busy. It may become avail-
able in fifteen minutes or half an hour. 
While waiting, you can try to access 
another site. Once you finally connect 
to a site, your connection time may 
be limited to 30 minutes, for example. 
Furthermore, the connection will cost 
at least the price of a local phone call. 

Therefore, you need to use your 
time efficiently. Instead of browsing 
through forum messages or file lists 
online, you should download them to 
your own computer. Replies to mes-
sages should be written with a specific 
offline reader and uploaded as a pack-
age the following night.

Of course, BBSes were not websites; 
users connected directly via charac-
ter-based terminals. The black termi-

nal screen slowly printed lists of com-
mands that, when typed, allowed the 
user to move from one area to another 
and use different functions. The BBS 
server was most commonly located in 
the home of its administrator, the Sys-
tem Operator (SysOp). SysOps often 
followed what their users were doing 
and would sometimes open private 
chats with them. BBSes were often dec-
orated with personal, colourful charac-
ter graphics and, at its best, calling one 
felt like you were visiting the owner’s 
home.

Of course, there were also larger  
BBSes. Some were located inside real 
data centres and had several phone 
lines – and some even charged callers a 
separate fee. Finland’s largest BBS was 
MBnet, which operated between 1994 
and 2002 and could accommodate 
over 500 simultaneous users. However, 
a typical BBS ran on a hobbyist’s per-
sonal computer. Some were open 24 
hours per day, while others were only 
started at night.

In Finland, calling BBSes was not  
very common among computer hob-
byists in the 1980s. Even software pi-
rates used mail for trading their flop-
pies until the turn of the decade. One 
of the reasons was that antiquated ap-
proval legislation made modems fairly 
expensive to purchase and use.

BBS-style communication was also 
marketed for the masses: Videotex, 
which was born as cousin of Teletext 
in the late 1970s, was expected to bring 
data networks into every home by 
means of easy to use terminals. Finnish 
Videotex services included Telesampo 
and Infotel which were used for online 
banking in particular. However, the 
system was only successful in France, 
where the Minitel service had millions 
of users at one point. 

Teletype.

Menus from a bulletin board system running BBBS.

For many Finnish BBS users, Freenet Finland was their first contact with the Internet.
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Mainframes and universities
While hobbyists were setting up their 
first modem BBSes, mainframe opera-
tors were already busy building packet 
networks that used fixed connections. 
Since 1969, the United States had been 
constructing ARPANET which includ-
ed military and university computers. 
In Europe, the French CYCLADES was 
a similar network, and even Finland 
started planning a university network 
already in 1974.

Fixed lines were copper lines and 
physically similar to telephone lines, 
but they were entirely reserved for 
connecting two points. A custom-
er leased the entire line and received 
access to its entire capacity. Initially, 
ARPANET operated at 50 kilobits per 
second – twenty times faster than a 
standard telephone modem.

The idea behind a packet network 
is that the machines connected to it 
send out data packets that include 
the address of the receiving comput-

er. The machines also continuously 
listen to the line and collect packages 
addressed to them. The intersections 
of the lines have routers that forward 
the packets according to their address. 
Initially, ARPANET used a packet pro-
tocol known as NCP, but it switched 
to Internet Protocol (IP) in 1983. At 
the same time, the military computers 
were separated into a dedicated net-
work and the remaining part became 
known as the Internet.

In Finland, Internet-type commu-
nications started with networks that 
were entirely modem based. In the 
early 1980s, universities had UNIX 
machines that supported email mes-
sages between users (mail) and public 
newsgroups (news). UNIX had a pro-
gram known as UNIX to UNIX Copy 
(UUCP) that allowed UNIX machines 
to transfer conversations to each other 
over modem connections. Mail bags 
were usually exchanged only once or 
twice per day, which meant that mes-

sages took days to travel across larger 
UUCP networks. The Finnish network 
was connected to the internation-
al UUCP network in 1983. Fidonet, 
which later achieved popularity in the 
BBS world, was also based on exchang-
ing message packets.

Packet networks arrived in Fin-
land in 1983 when the governmental 
telecommunications service started 
offering an X.25 network known as 
Datapak. The invoicing was based on 
the amount of transferred data. Banks 
were the first users of the network, but 
the Finnish University and Research 
Network (FUNET) that was started 
the same year also decided to start us-
ing it. In a few years, however, FUNET 
switched to 64-kilobit leased lines after 
the increase in email traffic resulted in 
substantial data transfer bills.

Universities had a wide range of 
hardware from different manufactur-
ers, each with their own network tech-
nology, and FUNET was transferring 
packages from all of them. DECnet was 
only intended for VAX machines and 
other computers from Digital. EARN 
was a network of European universities 
that was established and sponsored by 
IBM. It offered mailing lists and instant 
RELAY messaging. UNIX computers 
only understood IP, but VMS machines 
could speak any protocol. The only 
fixed international connection ran via 
EARN, which meant that, even in 1987, 
international UNIX emails and news 
posts had to be transferred by modem. 
This situation improved the following 
year, when the university networks of 
the Nordic countries were connected to 
64-kilobit lines, forming NORDUnet.

NORDUnet connected with the 
Internet in 1988, when a 56-kilobit 
satellite link was established between 
Stockholm and Princeton. However, 
the United States remained cautious 
about Finland, since it was right next 
door to the Soviet Union. The very 
same year, the Nordic countries lost 
the Internet for a week after an enter-
prising Finnish student had tested the 
security on some US Army servers.

Little by little, the Internet replaced 
all other protocols in the university 
networks. Nowadays, few people will 
recognise EARN, for example, even 
though it was the most popular data 
network in European universities for 
several years.

ANSI graphics from Haciend el Bananas.

One of the most popular BBS games: Legend of the Red Dragon (LORD).
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Worlds collide
In the early 1990s, BBSes were still very 
far detached from the packet networks. 
As a result, most BBS users had a fairly 
vague idea of the Internet. Some BB-
Ses were connected to the Internet via 
the UUCP network, for example, and 
there were a couple of systems with 
fixed Internet connections. These were 
located at universities.

1993 was the year when many hob-
byists connected to the Internet for the 
first time. Around this time, several 
ISPs offering reasonable prices were 
established in Finland. In fact, some 
of them were BBSes that purchased a 
fixed connection to the Internet and 
paid it back by collecting a monthly fee 
from their users. User interfaces were 
still character-based, usage times were 
limited and the lines were often busy.

Most services offered by the Internet 
had an equivalent in the BBS world. 
Email was similar to private messages, 
newsgroups were like public messages 
and IRC was reminiscent of the cha-
troom in a multi-node BBS. However, 
everything happened on an entirely 
different scale. There were thousands 
of busy newsgroups, some of which 
were dedicated to very niche topics. 
The chats and MUDs attracted unbe-
lievable numbers of users from dozens 
of different countries, which made 
geographical boundaries irrelevant. 
Many users felt as if they had stepped 
from a small village into the centre of a 
metropolis.

Modems became commonplace in 
the 1990s, which could be seen as an 
increase in the use of BBS and the In-
ternet. Many hobbyists used both, but 
for different purposes. BBSes were 
seen as clear, closely-knit communities 
were like-minded people could discuss 
anything and everything. In Finland, 
the system of local phone calls and 
regional phone companies created a 
separate BBS scene in every province. 
The users also arranged get-togethers 
with one another. The Internet was a 
less personal, more chaotic and lim-
itless ”ocean of information” that was 
used to search for files, discussions and 
expertise on specialist topics.

During the latter half of the decade, 
the Internet started to erode the BBS 
world. In early 1996, there were over 
500 public 24H BBSes in Finland; by 
the year 2000, this number was down 

to a few dozen. The availability of fixed 
broadband connections made many 
users give up their phone subscrip-
tions and, with that, also the BBSes. 
The most loyal BBS users only left at 
the last minute, and for many of them 
the transition was far from easy.

Many BBS communities disbanded 
completely when they were unable to 
find a suitable gathering place on the 
Internet. The most resilient SysOps 
moved their BBSes online, either di-
rectly or by converting them to online 
forums, but very few of them were suc-
cessful. The communities that chose an 
IRC channel to replace their BBS fared 
the best. Of course, IRC is a very differ-
ent animal by nature, but it was able to 
capture the close feeling of community 
that was typical of BBSes better than fo-
rums or newsgroups, for example.

Out with the old, in 
with the new
The Internet has developed from a 
secretive elitist society into a basic hu-
man right. The researchers, students 
and hackers were gradually joined by 
representatives from all walks of life. 
For many, Facebook was the final step 
in the journey towards Internet com-
munity addiction.

The Internet has changed over the 
years; sometimes, this has even been 
for the better. Even the less technically 
inclined can now be heard and finding 
interesting content from among all the 
white noise is now easier. However, 
change always comes at a cost: when a 
once popular online service fades away 
and the users disappear, the same sense 
of community is never felt again. The 

new service will always lack a key fea-
ture and many users will never adapt 
to it. Communities dissolve, leaving 
many with an empty feeling.

Facebook will be replaced by some-
thing new within the next ten years. 
By then, even the general public will 
understand the historical nature of 
the Internet – how even data networks 
undergo paradigm shifts and how new 
services are always built on top of old 
ones. Maybe BBSes will also be given 
the merit they deserve? 

PTT BBS, a giant BBS in Taiwan.

BBS status in 2013
At time of writing, the website 
telnetbbsguide.com lists 350 operating 
BBSes. Most are only accessible via 
Telnet, but some American BBSes also 
have a phone line. There are three 
Finnish BBSes on the list: BCG-Box 
(bbbs.net), a support BBS for the BBBS 
software; Rampton Bird’s Box 
(rbb.bbs.fi:32) and Haciend El Bananas 
(haciend.bbs.fi) which specialises in 
computer art.

Most modern BBSes are barren – like 
museum exhibits that have been left in 
place even though there are no more 
users. However, there are still some 
very large and active systems. PTT 
from Taiwan may have up to 150,000 
simultaneous users.

The Western BBS scene has close 
ties with MUDs (Multi-User Dungeons) 
and the boundary between a BBS and 
a MUD is not always clear. MUDs are 
still going strong despite the WoWs and 
LoLs; according to mudstats.com, the 
largest MUDs have over 800 simultane-
ous players. The Finnish BatMUD has up 
to 200 players.

http://telnetbbsguide.com
http://bbbs.net
telnet://rbb.bbs.fi:32
telnet://haciend.bbs.fi
http://mudstats.com
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Technology

U NIX workstations 
are desktop size ma-
chines that have been 
designed to run a var-
iant of UNIX. Howev-

er, their background is different. While 
PCs are home computers that gradu-
ally took on professional tasks, UNIX 
workstations are scaled-down versions 
of mainframes.

Workstations were used for de-
manding professional applications that 
microcomputers were unsuitable for. 
These included industrial design, 3D 
graphics and scientific research, for 
example. Workstations were also often 
used as servers, and most manufactur-
ers offered servers that were compati-
ble with the workstation models. Lat-
er on, manufacturers started focusing 
solely on servers.

Cross-breeding 
micros and minis
In the 1970s, most computer use con-
sisted of timesharing. However, the 
idea of a personal computer reared 
its head on two fronts: some people 
wanted to use cheap microchips to 
construct something that would bare-
ly pass for a computer, while others 
dreamt of machines that would dedi-

cate all the resources of a ”full” com-
puter to serving a single user. An early 
example of the latter is the Xerox Alto 
(1973), which is known as a pioneer 
of the graphical user interface and the 
Ethernet network.

UNIX was originally designed as 
a timesharing operating system that 
was used on Digital’s PDP-11 and VAX 
minicomputers via text terminals. In 
the early 1980s, however, companies 
developing single-user UNIX comput-
ers started entering the market: these 
included Apollo Computer, Sun Mi-
crosystems and Silicon Graphics. Later 
on, even veterans like Digital and IBM 
hopped on the bandwagon. UNIX had 
originally been developed as an open 
system, but it started to become com-
mercialised and was divided into man-
ufacturer-specific variants.

Workstations in the 1980s were com-
monly based on the Motorola 68000 
series of processors. Its instruction 
set is reminiscent of the Digital min-
icomputers mentioned above. In the 
1990s, the most common choices were 
32-bit and 64-bit RISC processors that 
were usually developed and manufac-
tured by the equipment manufacturers 
themselves. This proprietary approach 
also created compatibility problems 

between different UNIX variants.
By the turn of the millennium, 

standard PCs had caught up with the 
UNIX workstations in many respects. 
This caused financial difficulties for 
several manufacturers, and they refo-
cused their attention on supercomput-
ers and server hardware. Workstations 
went out of production or they were 
replaced by PC-based hardware. De-
commissioned workstations started 
ending up in the hands of hobbyists.

So, what can you do with it?
UNIX workstations have not been vi-
able alternatives to PC hardware for 
a long time. Nevertheless, they have 
a certain charm and air of old-age 
professionalism. They differ from, 
say, PCs running Linux in charming 
and bizarre ways, but are still similar 
enough to offer a comparable user ex-
perience. They are also small enough 
to fit inside a normal home.

In particular, old UNIX machines 
have been turned into servers on home 
networks. The subtleties and quirks of 
the hardware and operating systems 
make projects more interesting than 
standard Linux hacking. However, 
they can be used for other purposes 
as well. A good rule of thumb is that 

Beautiful, forgotten UNIX hardware
Many people can appreciate old home computer hardware. Older professional computers, such 
as UNIX workstations and servers, are not as widely known.
Story by Ville-Matias Heikkilä  Images by Mikko Torvinen, Wikimedia Commons users Shieldforyoureyes,  
Zymos, Brian Pitts, Napoli Roma, Thomas Kaiser, Fluff, Modano, Thomas Schanz, allaboutapple.com

http://allaboutapple.com


29

if you can run a program on the Rasp-
berry Pi Linux, you can also run it on a 
1990s workstation.

Many of the traditional UNIX op-
erating systems still receive version 
updates, since they are still used for 
critical servers. Finding genuine soft-
ware for your machine may sometimes 
require a bit of luck; in its absence, you 
can usually test the machine with a free 
UNIX variant like Linux or NetBSD.

Proprietary problems
Hauling an old UNIX machine home 
will usually result in a host of prob-
lems. Displays commonly use a 13w3 
connector or coaxial RGB – neither of 
which can be found on a standard PC 
monitor. You can either solder togeth-
er an adapter or use a serial port ter-
minal. Keyboards and mice are usually 
completely exotic. Hard drives, optical 
drives and even floppy drives are usu-
ally connected via SCSI in all models, 

with the possible exception of the PC-
type cheap variants.

If the machine has had its hard drive 
wiped or removed, the first task for the 
hobbyist will be to find an operating 
system and install it. The installation 
may be tricky; for example, the instal-
lation CD might not boot unless the 
block size for the CD drive is correct. 
You can usually start the installation 
over the network via TFTP, but this 
commonly requires another computer 
with the same OS on the network.

If there are any GNU software pack-
ages available, you should install them. 
The operation of commercial UNIX 
tools usually differs from that of the 
GNU tools, which may cause compat-
ibility issues. The manufacturer’s own 
C compiler is usually better at low-lev-
el optimisation for the target proces-
sor, but GCC is more compatible and 
superior at high-level optimisation.

You may also encounter the word 

open in commercial UNIX environ-
ments. However, this usually means 
that the software is independent of 
the manufacturer, and does not refer 
to open source. For example, the CDE 
desktop environment and the Motif 
library are ’open’ additions to the X 
window manager that never became 
popular on the Linux side due to their 
commercial nature.

Overall, old UNIX machines are in-
teresting devices. If you come across 
an old UNIX workstation, server or 
terminal while browsing random junk, 
you should definitely pick it up – they 
are much more interesting than old 
consumer PCs, anyway. 

The Geometry Engine GE10 GPU from an SGI 
Onyx.

Connectors on an SGI Onyx.

Sun's 64-bit UltraSPARC 1 processor.

Terminals
UNIX machines have always been used as servers 
for multiple users, and you are sure to run across 
terminals when hunting for UNIX hardware. 
Terminals can be roughly divided into two groups: 
There are text-based ”dumb terminals” with RS232 
interfaces and graphical X terminals that connect 
over Ethernet. Terminals usually consist of a CRT 
monitor, the terminal logic inside the monitor case 
and a set of input devices. Usually, they are easy 
to connect to UNIX hardware as well as modern 
Linux PCs.

Perhaps the most famous manufacturer of text 
terminals is Digital, the developer of the de facto standard VT100. Even though all 
the commonly used terminal emulators are VT100 compatible, the control codes may 
differ greatly between different manufacturers. However, a virtual terminal software like 
screen can correct the compatibility issues.

The X window system is built on a client-server model, which allows basically any X 
application to run on an X terminal, right up to the modern web browsers. Neverthe-
less, problems may arise due to the limited colour palettes of the old terminals and the 
tendency of new software to use the OpenGL API.

A hobbyist's collection of UNIX workstations.
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Sun Microsystems
Sun Microsystems was established in 
1982 and the MC68000 based Sun-
1 was introduced the same year. The 
company switched to its own SPARC 
processor family with the Sun-4 that 
was introduced in 1987.

In 1990, Finnish journalist Jyrki J. 
J. Kasvi described the 32-bit SPARC-
station 1 as his ”dream computer” – 
completely unaffordable due to the FIM 
100,000 (approx. $20,000) price tag. 
When Skrolli’s Editor-in-Chief purchased 
the same machine ten years later, it 
only cost FIM 150.

Sun uses a UNIX variant known as 
SunOS or Solaris. Solaris and Sun 
hardware are held in high regard on the 
server side, as they can utilise a large 
number of processors effectively. Solaris 
is also available for x86 architecture 
and it is free for non-commercial use.

Sun has intentionally crippled its low-
er-end workstations in order to make 
the more expensive ones appear more 
powerful. For example, its cheap display 
adapters use chips that are common 
on PCs, but their hardware acceleration 
is not supported at all. The IDE disk 
controller drivers also run purely on the 
CPU.

Sun Ray thin clients were a fairly 
common sight on desktops in the 
2000s. They could transfer sessions from 
one terminal to another by means of 
an ID card. A Sun Ray can be used for 
remotely accessing X window managers 
as well as Microsoft Windows.

The database company Oracle pur-
chased Sun in 2009. The development 
of SPARC processors and supercomput-
ers using them still continues.

Silicon Graphics
Silicon Graphics, like 
Sun, was established 
in 1982. The IRIS 1000 
graphics terminal was 
its first product, but 
the IRIS 2000 and 
3000 were full-blown 
UNIX workstations. 
In 1986, the com-
pany moved from 
the MC68000 to the 
MIPS architecture and purchased MIPS 
in its entirety in 1992.

Since the beginning, SGI has made a 
name for itself in 3D graphics, and they 
became especially famous in Holly-
wood in the 1990s. The infamous UNIX 
hacking scene of the film Jurassic Park 
shows a 64-bit Crimson workstation 
running the three-dimensional fsn file 
manager.

SGI is one of the pioneers in 3D 
acceleration. The display adapter on 
an Indigo workstation can be larger 
than the actual motherboard. SGI also 
developed the graphics hardware for 
the PlayStation 1 and Nintendo 64 
game consoles, and both of them use 
MIPS processors like SGI’s workstations. 
The OpenGL graphics API that is still 
considered an industry standard was 
originally created in 1992 on the basis 
of the IRIS GL graphics library.

The ”low-cost” O2, introduced in 
1996, is one of SGI’s most popular 
workstations. Its higher-end models 
included a built-in camera. The unified 
memory architecture allows all of the 
memory, up to one gigabyte, to be used 
by the Graphics Processing Unit. O2s 
were even given out as prizes at the 
Assembly demo party in the 1990s.

On the server side, the IRIX oper-
ating system and, by extension, SGI 
hardware, has a bad reputation since it 
is considered vulnerable and unstable 
when compared to the competitor Sun.

Silicon Graphics International, 
technically a different company than 
the original SGI which went bankrupt in 
2009, focuses on x86 based supercom-
puters and servers. MIPS and IRIX are 
long forgotten.

Digital Equipment 
Corporation
Digital Equipment Corporation manu-
factured computer components already 
in the 1950s. UNIX was originally 
developed on DEC’s PDP-8 and PDP-
11  minicomputers, from where it was 
converted to 32-bit VAX machines in 
the late 1970s.

The VAX based VAXstationia, which 
entered the market in 1984, can be con-
sidered DEC’s first UNIX workstation. 
Although the default operating system 
for the VAX was VMS, which is com-
pletely unrelated to UNIX, DEC’s own 
UNIX variant Ultrix was also offered 
for this machine from the beginning. 
In addition to VAX, Ultrix also runs on 
PDP-11 and MIPS based DECstation 
workstations.

In 1992, DEC introduced its own 
64-bit RISC architecture, the Alpha. 
The Alpha is famous for its computing 
power, and even Cray selected it for its 
supercomputers in the 1990s. Alpha 
was even billed to replace the x86 
architecture used in PCs at some point, 
which is why Alpha-based PC moth-
erboards have found their way in the 
hands of hobbyists.

The UNIX variant used with the Alpha 
was originally known as OSF/1, but it 
was later renamed as Digital UNIX 
and further as Tru64. In addition to 
these, Alpha can run OpenVMS and 
even Windows NT to some extent.

In 1998, DEC was bought by PC man-
ufacturer Compaq, which in turn was 
bought by Hewlett-Packard in 2002. 
The final Alpha was the 21364, released 
in 2004, as HP decided to concentrate 
on PA-RISC and IA-64 architecture for 
its supercomputing needs.
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International 
Business Machines
The information technology pioneer 
IBM, famous for its large mainframes 
and PCs, entered the UNIX workstation 
market in 1986. The IBM 6150 or RT 
PC was based on the PS/2 frame used 
on PCs, but the processor had been 
replaced with IBM’s own ROMP. ROMP 
can be considered to be the first RISC 
microprocessor, since IBM developed it 
already in 1981. However, IBM sat on 
the design for years, allowing others to 
commercialise their RISCs.

In 1990, ROMP was replaced by 
POWER, and the workstations, servers 
and supercomputers using it were 
commonly named RS/6000. The little 
brother for the POWER was the Pow-
erPC, developed in cooperation with 
Apple and Motorola and also used on 
consumer hardware.

IBM changed the branding of its 
system families at the turn of the 
millennium and the RS/6000 became 
the System p. Later on, System p was 
combined with System i, previously 
known as AS/400, which created the 
Power Systems range of servers and 
supercomputers. In addition to IBM’s 
own UNIX variant, AIX, these machines 
also support Linux and IBM i, which 
originates from AS/400.

IBM is still actively developing main-
frame microprocessors. Alongside the 
POWER processors, IBM also develops 
the zEC range which, despite its high 
computing power, is still machine code 
compatible with IBM’s 1960s flagship, 
the S/360.

Hewlett-
Packard
Hewlett-Pack-
ard has been 
manufacturing 
computers 
and cal-
culators 
of different sizes 
and their peripherals since the 1960s. 
HP entered the UNIX world with the 
HP 9000 range, introduced in 1984. In 
1989, HP purchased Apollo Computer 
which offered a range of workstations. 

In addition to MC68000s, the early 
HP 9000s also used stack-based FO-
CUS processors. They were phased 
out in the late 1980s in favour of HP’s 
own PA-RISC architecture. In 2003, 
PA-RISC was replaced by Intel’s IA-64 
or Itanium, and the model name that 
referred to the fictional HAL 9000 was 
also discontinued.

HP’s UNIX variant HP-UX is still 
considered a swear word by many. 
Despite being efficient and reliable in 
itself, it differs from the other manufac-
turers’ variants in several respects. HP’s 
text terminals are not VT compatible, 
the default C compiler is mostly only 
suited for compiling HP’s own code, the 
character sets and command arguments 
are different, and so forth and so on.

The most popular PA-RISC work-
stations were the 32-bit 712 and 715 
that were launched in the mid-1990s 
to compete with PCs. They can accept 
PC keyboards, mice and displays, but 
are significantly faster than period PCs 
in terms of 2D display processing, for 
example.

The current machines running HP-UX 
are Itanium based HP Integrity servers. 
In addition to HP-UX, they can also run 
Linux, Windows Server and NonStop 
and OpenVMS which HP has acquired 
through business mergers. Intel contin-
ues to develop the Itanium processors.

NeXT
NeXT was established by Steve Jobs in 
1985 and it had a fairly short history, 
but it did manage to launch a few UNIX 
workstations in the late 1980s and early 
1990s that were notable – and not only 
because of their cubistic appearance.

The NeXT Computer, NeXTcube and 
NeXTstation were based on Motorola’s 
68030 and 68040 processors and the 
56001 DSP that provided multimedia 
functionality. A separate RISC acceler-
ator with a dedicated GPU was also 
available, but it was never properly 
utilised by software. Instead of floppy 
disks, NeXT used magneto-optical disks 
with a capacity of 256 megabytes.

NeXTs run NeXTSTEP, a UNIX 
operating system based on the Mach 
microkernel and BSD – and the other 
similarities with Apple’s Mac OS X are 
not coincidental, either. For example, 
the system software is written in 
Objective-C, and instead of X-Windows, 
it uses a proprietary graphics solution 
with different user interface innova-
tions. NeXTSTEP also has a variant 
called OpenStep that runs on x86, 
SPARC and PA-RISC.
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M any computer 
peripherals use 
wireless radio con-
nections. Since 
all radio traffic is 

fairly easy to listen to without being 
detected, the communications of these 
peripherals have usually been scram-
bled by means of encryption. 

Out of curiosity, I dug out an old 
Logitech iTouch keyboard from the 
year 2000. It sends the keystrokes at 
a frequency of 27 MHz to a receiver 
connected to a PS/2 port. The receiver 
of this system is fairly large when com-

pared to the small, modern USB receiv-
ers, and studying the circuit board will 
already reveal details about its opera-
tion and frequencies. The circuit board 
has quartz crystals at different specif-
ic frequencies and an integrated FM 
receiver circuit, among other things. 
This gives us reason to believe that the 
information regarding the keystroke is 
transmitted as modulations of the ra-
dio’s carrier wave.

An easier way to analyse the oper-
ation is to listen to the radio. The 27 
megahertz frequency can be heard on 
any portable radio that has the 11-me-

tre shortwave band. Indeed, by placing 
a radio in the same room, I can hear 
the signal very clearly at a frequency of 
27.140 MHz. It consists of bursts. One 
burst is heard when a key is pressed, 
and another when it is released. Hold-
ing the key down produces a series of 
shorter signals. The side of the key-
board has a button labelled ”Connect”. 
You would think that this is related to 
renewing the encryption keys.

However, the portable radio is de-
signed for listening to radio broadcasts 
on the AM band and uses a low-pass 
filter. The filter may have removed 
some of the information. I can achieve 
a better bandwidth by using a cheap 
USB digital TV tuner dongle. The 
RTL-SDR software radio suite allows 
for tuning the RTL2838 receiver chip 
inside the dongle to an almost arbi-
trary frequency. I am also instructing 
the device to bypass its TV signal de-
coding circuitry and to dump the raw 
sample stream in real time on my com-
puter. The sample stream is an 8+8 bit 
in-phase/quadrature (I/Q) representa-
tion of the radio signal. In this case, its 
real part can be interpreted as PCM 
with minor distortion and saved in 
WAV format, for example. This way, I 
can analyse and process the signal as if 
it were sound.

A spectrogram of the sample stream 
reveals that the signal is, indeed, a 
special application of FM broadcast: 
a binary frequency shift keying (FSK) 
with a two-kilohertz shift. In an FSK, 
the carrier frequency varies between 
two values; one of them denotes one, 
the other denotes zero. A rough esti-

Hacking

Hidden bursts
Alice has a wireless keyboard. But how safely can she use it 
when Eavesdropping Eve lives next door?
Story by Oona Räisänen  Images by Oona Räisänen, Nasu Viljanmaa

Analysis of the raw sample stream.
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mate based on the spectrogram would 
indicate that the bit rate is around 870 
bps. Therefore, I use C to write a pro-
gram that has an 870-hertz sine oscilla-
tor and a phase locked loop (PLL) that 
locks the sine wave to the data. When 
the oscillator reaches ascending zero, 
the software outputs either zero or one 
depending on the current frequency of 
the signal, which can be determined by 
means of Fourier transformation.

One keystroke generates approx-
imately 85 bits of data. The length 
of the message varies slightly, which 
means that there may be some sort of 
encoding on top of the FSK. The first 
part of the bit string seems to remain 
the same, which suggests that it con-
tains a synchronisation, address or 
header field. The end of the bit string 
changes between keystrokes, especially 
when different keys are pressed. It may 
contain the PS/2 key code, but the en-
coding is not obvious.

The communication is not encrypt-
ed in any way. This is apparent because 
the messages seem to match the key: 
pressing a specific key will always gen-
erate a bit string that is more or less 
similar. Even a simple encryption algo-
rithm would hide this correlation. This 
also means that the Connect button is 
not related to a key exchange.

The unknown variable fields in the 
messages may be counters and check-
sums. They can be bypassed after a few 
messages have been saved for each key: 
this allows for creating a type example 
or average for the messages and saving 
them in a list that is linked to a specif-

ic key. After this, Eavesdropping Eve 
can compare the received data to all 
the bit strings in the list and rank the 
options according to their Levenshtein 
distance, for example. The key with the 
smallest distance is then printed on the 
screen, similarly to a keylogger.

In other words, using a Logitech 
iTouch keyboard for typing is compa-
rable to shouting your passwords and 
email messages across the room so 
loudly that all the neighbours can hear 
them.

Of course, it is possible that the 
eavesdropper cannot access the key-
board in advance and try all the keys 

individually. However, this is a minor 
obstacle. For example, Eavesdropping 
Eve can create statistics of the frequen-
cies of specific received bit streams 
and compare them to the frequencies 
of character combinations in a specific 
language, for example. This is known 
as frequency analysis, and it allows for 
determining which keystrokes corre-
spond to which bit strings, even if the 
protocol is completely unknown.

Current wireless peripherals have 
switched from the 27 MHz band to 
2.4 GHz, and encryption has, in all 
likelihood, also improved. Of course, 
frequency alone does not make listen-
ing more difficult or improve security, 
although the TV receiver that I am 
using cannot reach this band without 
modification. Some peripherals use 
encrypted Bluetooth or other common 
protocols. My own couch keyboard 
uses Logitech’s Unifying technology 
that claims to use 128-bit AES encryp-
tion. However, its key exchange con-
tains some suspicious stages that may 
warrant further investigation... Running a program that decodes the signal.

Bit strings from a few keystrokes.
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Software

L ack of knowledge can cause 
each one of us to leak our per-
sonal details online. Sharing 

information on the Internet is much 
easier and quicker than elsewhere, and 
this is why even personal matters can 
sometimes end up in the wrong hands. 
As a result of human error, someone 
else may receive a private message in-
tended for someone you know.
The large corporations have noticed 
that people are unaware of their pri-
vacy and they design their services for 
collecting our private data. While this 
is a form of spying, people are – tech-
nically – consenting to it. For example, 
people agree to Facebook recording 
everything and getting to know us. 
This information allows advertisers to 
target their advertising, and selling it 
has become a large business.

But even the large corporations have 
their own Big Brothers. In 2013, the 
leaked PRISM programme revealed 
that the largest online companies have 
been sharing their user information 
with the United States Government.

Privacy and its protection have both 
social and technological aspects. On 
the one hand, it depends on what infor-
mation the person is willing to share. 
On the other hand, different devices 
and software may spread information 
about us. Luckily, systematic spying 
and monitoring can still be prevented, 
or at least it can be made substantial-
ly more difficult. This article explains 
how.

Privacy starts with you
Common sense is your most impor-

tant tool for protecting your privacy 
and maintaining control of your infor-
mation. Thinking a bit about it every 
now and then will go a long way.

You should not disclose your own 
name, email or other information at 
every turn. Users of online services 
should assess which information is re-
ally needed in order to deliver the ser-
vice. Of course, using your real name 
and email is often preferable, but they 
also make the user very easy to track 
down. In some cases, you can use a 
temporary email address offered by 
10 Minute Mail or Guerrilla Mail, for 
example.

Even a regular photograph can con-
tain information which can be traced 
back to the photographer. Of course, 
the place in the picture can be identi-
fied, but the file itself may also contain 
other information. Photos contain Exif 
(Exchangeable image file format) data 

that often include the model of the 
camera, the time the photo was taken 
and the GPS coordinates. These allow 
for determining the location where the 
photo was taken. Exif data can be de-
leted and edited with the Jhead appli-
cation, for example.

The joys of free software
You should only use software that you 
know and trust on your computer. Be-
fore downloading software, you should 
always assess how reliable the authors 
and the source of the download are.

Software that is designed for spy-
ing on users and gathering user data 
is practically always closed-source, 
which makes studying its inner work-
ings difficult. In many cases, modify-
ing the software is also forbidden in 
the licence agreement.

Open source operating systems and 
software are a good starting point in 

Escaping Big Brother
While online, you always have a big brother watching you. However, he can be led astray. 
Learn the basics of reclaiming your privacy.
Story by Santeri Tani  Images by Nasu Viljanmaa, Santeri Tani

Vidalia and the Tor browser inside the Tails operating system disguised as Windows XP.
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terms of privacy. Their source code is 
freely available, which makes it more 
difficult to hide suspicious code in the 
software.

The use of free software can be con-
sidered an ethical choice. The Free 
Software Foundation promotes free 
software and provides information re-
garding it. The foundation’s principles 
are based on open source, but especial-
ly on the freedom to use and modify 
software. The Free Software Founda-
tion has defined the following four 
principles for free software:
•  The freedom to run the program as 

you wish, for any purpose.
•  The freedom to study how the pro-

gram works, and change it so it does 
your computing as you wish. Access 
to the source code is a precondition 
for this.

•  The freedom to redistribute copies 
so you can help your neighbour.

•  The freedom to distribute copies of 
your modified versions to others. By 
doing this you can give the whole 
community a chance to benefit from 
your changes. Access to the source 
code is a precondition for this.
The Free Software Foundation has 

created different licences for distribut-
ing software. The best-known of these 
is the GNU General Public License that 
has already become a symbol of free 
software. Free software is also released 
under many other licences, and some 
of them have different definitions of 
freedom. However, the openness of the 
development work and source code is 
the essential feature in terms of priva-
cy and reliability. For example, GNU/
Linux operating systems are generally 
very free, but their repositories might 
contain closed-source software.

For more information on the Free 
Software Foundation’s free software 
licences: http://www.gnu.org/licenses/

There are also operating systems 
that focus on information security and 
privacy. These include Privatix, Tin 
Hat and Pentoo, all of which are good 
choices for users concerned about 
their privacy. More advanced users 
may want to look into Tails, Janus VM 
and Whonix. They are extreme privacy 
solutions based on virtualisation and 
anonymous networks.

Protect your data
Using free software from a reliable 
source will avoid spyware with a high 
level of certainty. However, the com-
puter’s hard drive is used to store pri-
vate data that may end up in the wrong 
hands by other means. What if your 
computer is stolen?

A variety of encryption software is 
available for protecting your data. The 
hard drive can be encrypted at the file 
system level, which means that all the 
data is saved in encrypted form. En-
crypting individual files within the 
file system is also possible. This may 
require manual encryption operations.

GNU Privacy Guard (GPG) and 
TrueCrypt are examples of good en-
cryption tools. The Linux kernel in it-

self contains encryption functions that 
can be used to encrypt the hard drive 
file system. The installers for some 
GNU/Linux operating systems pro-
vide the option to create an encrypted 
partition for storing data.

The Internet
Internet users leave behind a large 
number of traces. Devices connected 
to the Internet have an IP address that 
is used for identifying the device and 
routing data. While you are connect-
ed to the Internet, your IP address is 
saved in several locations, such as the 
databases of online stores and discus-
sion forums. The IP address can be 
used to easily determine the user’s In-
ternet Service Provider (ISP) and ap-

The tinfoil hat section 
– how to achieve ultimate privacy
•	 Never let anyone else use your computer.
•	 Only install and use free software.
•	 Before installing the operating system, use a special disk such 

as Darik’s Boot and Nuke to completely wipe your system.
•	 Protect your hard drive and OS by means of multiple passwords. Remember that 

even the BIOS password can be circumvented by removing the motherboard battery, 
for example.

•	 Use TrueCrypt, GNU Privacy Guard or an equivalent to encrypt your hard drive, home 
folder and all your important files. Never store the most sensitive information outside 
of your own head.

•	 Even if you are using GNU/Linux or an open-source BSD operating system, use virus 
protection and firewalls such as ClamAV, Snort and Chkrootkit.

•	 Delete files using Bleach Bit or Srm, since normal file deletion only marks the data as 
unused. The data itself is preserved until it is overwritten. This is unnecessary on an 
encrypted drive.

•	 Check the cryptographic signature or other certificate of any downloaded software by 
using GNU Privacy Guard, md5sum, sha1sum or equivalent software.

•	 Make sure that your browser cannot be traced by using EFF’s user agent comparison 
tool (https://panopticlick.eff.org/).

•	 All network traffic should be routed through networks that protect your privacy, such 
as Tor, i2p, Freenet or Hyperboria.

•	 VPN and Tor: Only connect to Tor via a Virtual Private Network (VPN). These are 
available from IPredator and Tor VPN, which also accept anonymous payments via 
Bitcoin. You need to be able to rely on the provider of your Virtual Private Network at 
least as much as on the provider of your network connection. Proxies will often leak IP 
addresses and are unencrypted.

•	 Whonix: Mask your IP address by running virtual operating systems within your oper-
ating system and using one of them as a router for Internet traffic. This way, not even 
malware with root credentials can determine your real IP address.

•	 Tails: When using the Internet on other computers, use the Tails operating system that 
runs from DVD or USB.

•	 Never use wireless networks.
•	 Never use JavaScript, never switch on ”Do Not Track” and never accept cookies. Use 

the IceCat browser and Jon Do Fox’s privacy profile.
•	 If you simply must use a social network, use an alternative such as Diaspora or Friendica.
•	 Perform your web searches with Ixquick, Startpage or the distributed Hyperboria.
•	 Turn off your Internet connection when you no longer need it.

http://www.gnu.org/licenses
https://panopticlick.eff.org
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proximate location. The police and na-
tional intelligence services can receive 
information on the person behind the 
IP address from the ISP’s records (or 
by simply spying on them).

The PRISM programme revealed 
that the data traffic for all major online 
services is routed through the hands 
of the US National Security Agen-
cy (NSA). The most popular services 
such as Facebook, YouTube and Goog-
le may constitute the largest part of a 
basic user’s online traffic, which ex-
poses them to the NSA continuously.

Most data traffic is unencrypted. The 
ISP, as well as other parties, can super-
vise the traffic if the communication 
between the online service and user is 
not encrypted or the connection is not 
made through a Virtual Private Net-
work (VPN).

You should browse the Internet with 
an open-source browser such as Fire-
fox or its sisters, IceWeasel and IceCat.  
Users who want a Chrome-type brows-

er should consider the open-source 
Chromium.

You should disable browser histo-
ry and cookies. If you need and want 
cookies, the Better Privacy extension 
is useful for managing them. Some 
browsers have a ”Do Not Track” set-
ting that can be used to turn off track-
ing for some websites. It may work, but 
it can also make the user’s browser eas-
ier to identify.

In Firefox, you can adjust the user 
agent setting to make your browser and 
OS less identifiable. In a way, this hides 
the browser in the crowd and does not 
leave any unique clues behind.
•  Typing ”about:config” in the ad-

dress bar will allow you to edit the 
settings.

•  Add a new setting called ”general.
useragent.override”.

•  Enter a very generic user agent, 
such as ”Mozilla/5.0 (Windows; U; 
Windows NT 5.1; en-GB; rv:1.8.1.6) 
Gecko/20070725 Firefox/2.0.0.6”.

This setting makes the browser tell the 
server that you are using Windows XP 
and Firefox 2.0.0.6. If you want to be 
especially careful, you can also add the 
values in Table 1 in order to prevent 
browser identification.

Websites can run scripts in your 
browser. Some of them monitor the 
actions of the user, and some can even 
be classified as malware. NoScript for 
Firefox or Scriptsafe for Chromium are 
add-ons that allow the user to control 
the running of scripts.

And, of course, you should use an 
encrypted connection whenever pos-
sible. HTTPS Everywhere is an add-
on created by the Electronic Frontier 
Foundation. It checks whether the site 
offers the encrypted https protocol.

Instead of the official Java, consider 
the free IcedTea implementation. In-
stead of Flash, consider Gnash. Instead 
of using Google as a search engine, 
consider Ixquick, Startpage or Duck 
Duck Go.

But even after all this, using a web 
browser will make the user fairly vul-
nerable. Persons who are concerned 
for their privacy will only use web 
browsers for matters where using real 
names is mandatory.

Tor
The anonymous network Tor has rap-
idly gained popularity in recent years. 
It is fairly secure when used correctly. 
Tor was created as a government-level 
communication tool and was funded 
by the United States Naval Research 
Laboratory (NRL). In 2004, Tor started 
to receive funding from the Electronic 
Frontier Foundation, an organisation 
promoting electronic rights, and be-
came free software. Currently, Tor is 
an autonomous project that is funded 
by donations. The governments of the 
United States and Sweden are the larg-
est contributors.

Tor nodes are mostly maintained by 
private individuals. There are approxi-
mately five thousand active Tor nodes, 
which is much too few for four million 
daily users. The low number of nodes 
and high number of users results in 
slow data transfer over the Tor net-
work.

The Tor software launches a SOCKS 
proxy server on the computer and uses 
it to transfer the data. The Tor net-
work uses onion routing encryption, 

general.useragent.override Mozilla/5.0 (Windows NT 6.1; rv:10.0) Gecko/20100101 
Firefox/10.0

general.appname.override Netscape

general.appversion.override 5.0 (Windows)

general.oscpu.override Windows NT 6.1

general.platform.override Win32

general.productSub.override 20100101

general.buildID.override 0

intl.accept_languages en-us,en;q=0.5

network.http.accept.default text/html,application/xhtml+xml,application/xm-
l;q=0.9,*/*;q=0.8

network.http.accept-encoding gzip, deflate

Table 1. This makes Firefox appear as a popular standard browser.

user

target server

Tor node

Encrypted
connection

Unencrypted
connection

Structure of the Tor network.
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which is based on transferring the data 
through three Tor nodes. The user’s 
computer connects to the first node 
and only sees its IP address. The first 
node only sees the address of the user 
and the second node, and the second 
node only sees the address of the first 
node and the final node in the chain.

Connections between nodes on the 
Tor network are encrypted, with the 
exception of the connection between 
the last node and the target server. 
None of the parties sees the entire 
chain. For example, the target server 
does not know who initiated the con-
nection, since it seems to be coming 
from a Tor network node.

The easiest way to use Tor is to down-
load the Tor Browser Bundle from the 
Tor Project website. It includes a Fire-

fox browser that has been preconfig-
ured for use on the Tor network. It also 
includes the Vidalia control panel for 
adjusting the network settings.

In addition to anonymous network 
use, the Tor network can also be used 
to set up hidden services that can only 
be accessed via the Tor network. In a 
way, Tor and its hidden services are a 
network inside a network. The top lev-
el domain for these services is .onion.

In order to circumvent censorship, 

the Pirate Bay launched its own Pira-
teBrowser that is nearly identical to 
the Tor Browser Bundle but only runs 
through one node instead of three. 
This means that PirateBrowser is not 
a strong form of privacy protection, 
since the node between the user’s com-
puter and the target server can see 
both IP addresses.

Why Tor – are you a freedom 
fighter or a terrorist?
Tor has received both positive and neg-
ative publicity. Edward Snowden, the 
NSA whistle-blower, used Tor and the 
Lavabit email service to send informa-
tion on the US government’s PRISM 
programme to the press. Services such 
as Global Leaks and the New Yorker 
Strongbox strengthen Tor’s position as 
a tool for freedom of speech, since they 
can be used to safely send news items 
to the world.

The governments of some countries 
regulate international Internet con-
nections very strictly. This can make 
Tor an important channel for relaying 
sensitive information. However, iden-
tifying and blocking Tor connections 
is possible.

There will always be those who 
misuse the anonymity and freedom 
of speech: hidden websites have been 
used to distribute several terabytes of 
child pornography and to sell drugs. 
Tracking down these hidden servic-
es and their users is difficult, but the 
intelligence service of a country that 
focuses on cyber security may pull it 
off. The Federal Bureau of Investiga-
tion, for example, installed a JavaScript 
application on a server distributing 
illegal material in order to spy on the 
users of the server.

Tor and other encryption techniques 
may promote freedom of speech as well 
as unlawful activities. The technology 
in itself has no morals and it does not 
choose sides. Furthermore, it is not al-
ways clear who the villain is: the same 
person may be a freedom fighter for 
some and a criminal for others. 

The New Yorker’s service for anonymous news tips and information.

Official website for checking the operation of Tor, https://check.torproject.org/.

Useful Tor addresses
•	 One of the oldest sites listing hidden services, maintained by the Tor project: 

http://eqt5g4fuenphqinx.onion/
•	 A Finnish search engine containing legal .onion sites: https://ahmia.fi/
•	 Tor version of the Duck Duck Go search engine: https://3g2upl4pq6kufc4m.onion/
•	 Privacy-driven email service URSS Mail: http://f3ljvgyyujmnfhvi.onion/

https://check.torproject.org
http://eqt5g4fuenphqinx.onion
https://ahmia.fi
https://3g2upl4pq6kufc4m.onion
http://f3ljvgyyujmnfhvi.onion
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F inland has the most 
demosceners per capi-
ta in the whole world. 
Most of Finland’s best 
IT experts have a back-
ground in demos, the 

Finnish game industry is more or less 
dominated by demosceners, and the 
most significant computer hobby-
ist events were originally demoscene 
gatherings. Very few can appreciate 
demos as an art form, however. How 
could blobs that bounce to the beat 
of a monotonous tune be interesting? 
Why is no one interested in a deeper 
message and plotline? Are demos ac-
tually worthwhile to anyone who is not 
a member of a secret society?

Talent contest
Demos were born when young com-
puter hobbyists wanted to showcase 
their skills. Games already had copy 
protection in the early 1980s, which 

made the ability to crack them a val-
uable asset within the community. 
And, naturally, you had to sign your 
own work. The crackers started by ed-
iting their initials into the texts in the 
games, but before long, creating stylish 
signatures also became a dedicated 
sport. This gave rise to crack intros 
and separate demonstrations of skill – 
demos.

In earlier demos, in particular, most 
elements can be purely classified as 
bragging: ”Look at me, I made this!” 
Those who set new records could also 
say ”Look at me, this is possible!” The 
viewing experience is affected by your 
understanding of the technological 
framework involved, as well as the 
knowledge of what has been done ear-
lier within the same limitations. The 
uninitiated might be in awe of an av-
erage four-kilobyte demo, since they 
have no prior experience of what has 
been achieved in this file size.

Pitting one’s skill and achievements 
against others still remains an im-
portant motivator for making dem-
os. Even though the age of testoster-
one-filled gang wars is behind us, most 
demos are still released at demo com-
petitions, or ’compos’ for short, where 
the winners are selected by public vote. 
Of course, there are many ways to ap-
peal to a crowd, but breaking techno-
logical barriers with style continues to 
work well.

However, the limits of modern com-
puters are difficult to reach, and the 
game industry with its million-dollar 
budgets also raises the bar for its part. 
Over the years, the technical innova-
tion within the demoscene has shifted 
from the multiple-megabyte demos 
towards stricter categories that typical-
ly limit the size of the executable, the 
platform, or both. An executable of a 
few kilobytes in size cannot store an 
enormous 3D landscape by traditional 

Why demos suck
You cannot talk about Finnish computer culture without mentioning 

the demoscene and its productions. However, the essence of demos 
is not often understood. Skrolli will now attempt to explain how you 

should approach demos in order to get something out of them.
Story and images by Ville-Matias Heikkilä (Viznut/PWP)

C-64 demo from 1986: A scroller that crosses into the screen border? 
See it to believe it! (1001 Crew: Border Letter I)

C-64 demo from 2008: A plasma effect that crosses into the screen 
border? Yawn, another raster timing exercise! (Booze Design: Edge of 
Disgrace)
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means; it needs to be generated proce-
durally. On 8-bit machines, on the oth-
er hand, a universal 3D engine will not 
get you far. In order to accomplish new 
things, you need to utilise the charac-
teristics of the hardware in unconven-
tional and creative ways. Someone 
once compared demosceners to ninjas: 
they simply must use the window even 
when the door is in plain sight.

The importance of limitations and 
challenges has created a unique rela-
tionship between the demoscene and 
different computing platforms. In 
traditional computer culture, hard-
ware characteristics always finally 
boil down to computing power, and 
old computers are replaced by newer, 
more powerful ones. For demo writ-
ers, however, all platforms exist here 
and now, each with their own special 
features and limitations that give rise 
to specific challenges and aesthetics. 
In addition, the platform choice is in-
fluenced more by personal taste than 
the age of the author: hobbyists born 
in the 1990s, for example, may prefer 
the Commodore 64 for their demo art 
instead of a modern PC, and nobody 
will consider this odd in any way.

Value in beauty
Technical achievements are short-
lived, however. Someone will always 
advance the technique, making old 
achievements less spectacular. Dem-
os that are enjoyable year after year 
and decade after decade are also aes-
thetically pleasing: they offer good 
music, beautiful graphics and smooth 
transitions. Most modern demos, in 
particular PC demos that have very 
loose limitations, abandon all techni-
cal flamboyancy and are built solely 
on aesthetics. In other words, you can 
enjoy demos without any in-depth 
knowledge of their inner workings.

Demos have had the aesthetic di-
mension since the beginning. Many 
long scroll texts from the 1980s would 
have been left unread if they had not 
been accompanied by good music and 
beautiful raster bars. You could keep 
the same part running for hours, since 
the user could move to the next part 
by pressing the spacebar, for example. 
The ’trackmo’ style became dominant 
in the early 1990s; it combined music, 
visual displays and loading new con-
tent from disk into a music video-like 

experience that lasted a few minutes. 
Most modern demos still adhere to the 
trackmo structure.

Typical demo aesthetics are usually 
not very easy to approach. Some peo-
ple try to view them as short films, 
which makes them appear scattered 
and lacking in content. Those who 
approach demos like music videos or 
VJ sets can usually get more out of 
their visual style. In any case, watching 
demos takes some getting used to. It is 
like learning a new genre of music that 
has visual instruments in addition to 
the audible ones.

A genre is also a good point of ref-
erence since most demos are very 
focused on form. The same stand-
ard elements and stylistic touches are 
repeated from one demo to another: 
sending greetings to other groups, 
rotating cubes in honour of old tra-
ditions and syncing everything to the 
beat of the bass drum. Of course, many 
groups have their distinct style, but the 
genre features are nevertheless hard to 
miss.

In part, this focus on form is due to 
the competitions where the works are 
ranked. An experimental demo might 

What better way to ridicule the PC scene than to recreate its most over-
estimated demo on the C64. (Smash Designs: Second Reality 64, 1997)

Once all the standard platforms have been conquered, it is time to up 
the ante. (Trilobit: Doctor, Atari 2600, 2008)

Landscapes are a mainstay in miniature-sized demos. Nowadays, the 
entire landscape is generated in shader language. (RGBA, Elevated, 
PC-4K, 2009)

Many have considered this Russian demo humorous, but the author 
is serious about their political message. (Cyberpunks Unity: R, ZX 
Spectrum, 2004).
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not succeed, and overly emphasising 
content may be seen as a questiona-
ble attempt to beat another entry that 
demonstrates higher technical skill. 
On the other hand, many of the scene 
veterans also suffer from a lack of am-
bition – for them, simply doing some-
thing in order to prove that they are 
still active is sufficient.

Do we even need substance?
In addition to technique and aesthet-
ics, many demos also seem to include 
actual substance: themes, plotlines and 
even messages. Mostly, however, this is 
all smoke and mirrors. If the audience 
consists mostly of people unfamiliar 
with demos, it is a good idea to take 
the aesthetics in a more cinematic di-
rection. This makes it seem as if the 
demo is telling a story. However, the 
depth of this narrative is usually com-
parable to Italo-disco lyrics.

Whether demos are an art form was 
already under discussion in the 1990s. 
For many, demos are more compara-
ble to handicrafts; they are exercises in 
technique that create aesthetics with-
in the limits set by technology. On 
the other hand, there are also demos 
that emphasise artistic presentation 

and only use technology as a medium. 
Most demos are somewhere between 
these extremes, but usually closer to 
handicrafts than art.

In principle, the technology behind 
demos offers an excellent platform for 
content-driven works. However, turn-
ing your idea into a demo does not 
usually make sense unless the choice 
of technique in itself is a part of the 
message. Someone wishing to make 
animated films, for example, will be 
better off learning an animation suite 
than coding demos. On the other 
hand, if your idea is so unusual that 
no existing technique seems to suit it, 
demos may be a viable platform.

The limits of expression
The common conception is that break-
ing technological boundaries is the 
unwavering foundation for all demo 
art. Technology is always taken to new 
extremes, achievements are compared 
and the innovators of new tricks rise 
above all the others. Content, form and 
aesthetics are most often considered 
by-products and their boundaries are 
not broken as eagerly.

However, pushing the limits of ex-
pression has always been a part of 

demo art. The current demo aesthet-
ics would have never been born if the 
Amiga groups in the 1990s had not 
broken preconceptions concerning 
what demos can be. If a demo differs 
too much from the stabilised norms, it 
may be very poorly received. In order 
to protect their reputation, many demo 
authors publish their more avant-gar-
de demos under a different alias than 
the one they use for the ”serious” pro-
ductions. Demos with extreme styles 
often draw upon ’noise’ or ’glitch’ aes-
thetics and use an ambient soundtrack 
in place of more conventional styles. 
Only the imagination is the limit for 
these experiments.

However, there is one standard that 
even the most avant-garde demo au-
thors will not touch – the fact that 
demos are exactly the same on each 
run.

The main reason for their stubborn-
ly static nature is probably that they 
are designed for single showings dur-
ing demo competitions. Nothing must 
go wrong during the execution, which 
makes minimising the uncertainties 
a sensible choice. Code that operates 
at the technological extremes may be 
prone to errors. Creating a fixed run 
scenario can help to remove some of 
them. Furthermore, most demo pro-
grammers also write code for a living, 
which makes it understandable that 
they do not want to focus on bug-hunt-
ing and handling exceptions.

Demos would probably be more 
random and interactive if their main 
venue was still the home computers 
of individual hobbyists. Even a small 
amount of dynamism could also be 
used to explore the large grey areas 
that fall between demos, games and 
software toys. This might uncover en-
tirely new barriers to break. However, 
the main motivation for demo authors 
are the demo events and their stand-
ardised competitions, and few people 

When is this going to start? I don't get it; it should be disqualified! (Halcyon: Chimera, PC, 2002)

A beautiful, technically impressive 64K PC demo with a ray-tracer routine – but did you really 
need to ruin it with bad poetry? Luckily, it can be switched off. (Exceed: Heaven Seven, 2000)
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feel the need to publish anything out-
side of these events.

Some people will never get it
Demos may suck for a number of 
reasons. Their aesthetics are hard to 
grasp, their formulaic nature is dull, 
there is no real content behind the fa-
cade and the inside jokes fly over your 
head. The technical achievements are 
hard to understand or appear petty. 
Although most demos are poor, even 
in the opinion of their authors, the un-
initiated find it difficult to appreciate 
even the good ones.

The cliquey atmosphere, which is 
also typical of other subcultures, has 
been a blessing and a curse for the 
demoscene. On the one hand, it has al-
lowed demo art to develop on its own 
terms and in its own direction and, on 
the other hand, it has also made demos 
difficult to approach and very formu-
laic. At their worst, the scene’s internal 
standards prevent demos from finding 
new paths and their authors from see-
ing further.

The problem with cliques has been 

acknowledged for a long time. At the 
turn of the millennium, when the 
demoscene had already ceased its 
rapid expansion, demo art entered 
the mainstream. The scene started 
connecting with the art and science 
circles, writing books and arranging 
demo shows and seminars. The Alter-
native Party, an event arranged since 
1998, has questioned the standards of 
the demoscene and tried to find fresh 
views on demo art.

Although the efforts have been fruit-
ful, the basic problem has remained: 
making demos is largely an inside 
hobby that is difficult to place inside 
an external framework. Demos are too 
shallow for art, too eccentric for enter-
tainment and too technical to attract 
academic interest. Gamers cannot play 
them and hackers cannot read their 
source code. Demo authors may find 
it difficult to discuss the topic with 
people who do similar things for dif-
ferent reasons. In order for demo art 
to receive the approval and apprecia-
tion it deserves, we need research that 
defines its relationship with the rest of 

the world.
Academic research into demos has 

matured in recent years as research-
ers have found theoretical concepts 
that are suitable for describing them. 
For example, Daniel Botz, who wrote 
his dissertation on demo aesthetics, 
has found that, for demo authors, the 
different platforms are not so much 
tools as raw materials for forming their 
works. Digital media researchers Nick 
Montfort and Ian Bogost have set up 
a new field of research, platform stud-
ies, which may prove highly useful in 
demo research, as well.

Demos are a unique form of expres-
sion that offers limitless possibilities 
and is guided by radical technical ex-
perimentation. However, traditions 
and formalities are limiting their 
potential. It would be beneficial for 
the future of demos if people made, 
watched and understood them even 
outside of the traditional demoscene. 
This is why Skrolli will be discussing 
demo culture in the future, as well. 

Not even the holy cow of these skill competitions is safe from criticism. 
(ISO: Vati, PC, 1997)

In its time, even this classic was frowned upon, as it favours content 
over technical achievement. (Spaceballs: State of the Art, Amiga, 1992)

Greetings must always be sent in traditional fashion, even if your 
demo is built around a hardcore punk soundtrack. (Traktor: Jesus 
Christ Motocross, Amiga, 2009)

At first glance, this seems to be saying something, but in reality, it is a fair-
ly incoherent series of miscellaneous cool stuff. (ASD: Lifeforce, PC, 2007)
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Games

S ega originated from a com-
pany called Service Games 
that was established in Ha-
waii in 1940. After World 
War II, the founders, Ray-

mond Lemaire and Richard Stewart, 
moved operations to Japan, where the 
United States had set up several mili-
tary bases. Service Games imported 
jukeboxes and other entertainment 
from the States for the enjoyment of 
the military personnel stationed there. 
The company merged with a compet-
itor, Rosen Enterprises, shortened its 
name to Sega and soon found that it 
had become a manufacturer of enter-
tainment devices instead of only an 
importer.

The arcade business was booming 
in the 1970s, and Sega grew alongside 
it. However, arcades lost momentum 
in the early 1980s, and falling reve-
nues scared the company’s American 
owners. The Japanese branch started 
to gain more influence. At the same 
time, the company turned its attention 
towards the consumer market, and 
its first console SG-1000 (Sega Game 
1000) was launched to compete with 
the Nintendo Famicom in 1983.

The SG-1000 was not a success, but 
Sega continued developing it. Through 
various iterations, it finally became 
the console known as the Sega Master 

System. Even though SMS was unable 
to dethrone Nintendo, it did find a fol-
lowing in Europe and South America 
and lived until the 1990s.

MegaDriving it home
The 16-bit Mega Drive (Genesis in the 
US) was Sega’s only undisputed suc-
cess. Its design drew on the compa-
ny’s finest expertise. Sega’s System 16 
arcade hardware had already demon-
strated the capabilities of the combina-
tion of Motorola MC68000 and Zilog 
Z80, and by 1989, its price had fallen to 
mass-market friendly levels.

The company wanted to ensure suc-
cess in the United States, in particular. 
Sega had ditched its old marketing 
partner, the toy company Tonka, and 
built Sega of America from scratch by 
recruiting the best people in the busi-
ness. It had also offered the Genesis to 
Atari, but the Tramiels were not keen 
on the idea. This was probably for the 
best. Across the pond, the company 
purchased the publisher Virgin Mas-
tertronic and turned it into Sega Eu-
rope.

Mega Drive was launched two years 
before its main competitor, the Super 
Nintendo. Its games looked especially 
good alongside the ageing NES, and 
Sega of America’s marketing milked 
this to the last drop. Genesis does what 

Nintendon’t was a catchy phrase, but 
sales were initially unconvincing: only 
half a million consoles were sold dur-
ing the first year.

Halfway through 1990, Tom Kalin-
ske was appointed the CEO of Sega 
of America, and he immediately set 
things in motion by hiring top people 
in his management team, lowering the 
price of the console and launching the 
development of games that were espe-
cially designed for the Western market. 
These were smart moves that brought 
Sega a 65% share of the 16-bit mar-
ket in North America. Sales were also 
healthy in Europe, and the console sold 
approximately 29 million units during 
its lifetime. This made the lacklustre 
success in Japan easier to tolerate.

Now what?
In order to maximise its profits from 
the Mega Drive, Sega started to inno-
vate different accessories. CD-ROM 
was a buzzword, so a CD add-on 
sounded like a good idea. The Me-
ga-CD (Sega CD in the States) saw the 
light of day in late 1991. In addition to 
a CD drive, it also added graphics pro-
cessing power, but failed to attract buy-
ers. One of the reasons was that most 
games were grainy full-motion video 
affairs with very little actual gameplay. 
Fewer than 10% of Mega Drive owners 

Fail!
How SEGA 
dropped the ball 
In 1992, Sega held 65% of the U.S. console market. Less than ten years later, it withdrew from 
the hardware market entirely. How was this even possible?
Story by Mikko Heinonen  Images by Wikimedia Commons/Evan-Amos
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bought the CD add-on.
The Mega Drive was 

also licensed to other man-
ufacturers. At least Aiwa, JVC and 
Pioneer made their own versions 
with special additions. Aiwa’s version 
doubled as a radio and CD player, the 
JVC had a karaoke function and the 
Pioneer LaserActive played LaserDisc 
movies. It even had a few LaserDisc 
games. Sega also produced several var-
iants, such as the Mega Jet designed 
for use on board airliners, but none of 
them became very popular.

Stormy weather on Saturn
Most successful companies struggle 
with finding the next big thing, but 
very few go as far as Sega did. The op-
posing parties were Sega of Japan, the 
cornerstone of the entire company, 
and Sega of America, the creator of 
its greatest success. The topic was, of 
course, how to master the next gener-
ation.

Sega’s R&D was traditionally based 
in Japan. There, the company’s engi-
neers had developed the Virtua se-
ries of coin-operated games that were 
groundbreaking in the early 1990s. 
However, their technology was far too 
expensive for home use, so Sega had 
launched a project with Hitachi for the 
development of a new RISC processor. 
The new console would be known as 
the Saturn, and it would include two 
parallel SH-2 processors and a host of 
other chips.

The Americans considered the ar-
chitecture unfeasible. Kalinske con-
tacted Silicon Graphics and asked for 
help in designing the graphics chip 
for the Saturn, but Japan called off the 
deal. Soon afterwards, SGI teamed up 
with Nintendo to create the Nintendo 
64, a substantially more successful de-
vice. It was also rumoured that when 
Sony and Nintendo fell out over the 

design of the Super Nintendo CD-
ROM expansion known as the Sony 
PlayStation, Sega of America had 

tried to negotiate a deal on the hard-
ware. However, Tokyo was adamant 
that no outside help would be enlisted. 
Nevertheless, after seeing the PlaySta-
tion prototype, Sega’s management de-
cided to revise the design of the Saturn 
and add more 3D processing power.

32 times the misfortune
The development of the Saturn was 
proceeding slowly and competitors 
were launching new products. As a 
stopgap solution, both halves of Sega 
decided to turbo-charge the Mega 
Drive. An add-on known as the 32X 
was created; it included RAM, two 
SH-2 processors and a selection of 
other hardware. The unit, which was 
placed on top of the 16-bit workhorse, 
required a dedicated power supply, 
but it could utilise the controllers and 
possible CD drive of its host. Cartridg-
es would be the preferred format for 
delivering games, however. The goal 
was to launch the product on the US 
market for the 1994 holiday season in 
order to compete with the 3DO and 
Jaguar, among others.

Sega of America was left in charge of 
the 32X, while Sega of Japan focused 
on finalising the Saturn. The work suf-
fered from chip shortages and the fact 
that documentation for the processors 
was only available in 
Japanese. The real 
bomb dropped, 

however, just as the device was being 
launched. Sega of Japan was bringing 
the Saturn to the Japanese market on 
22 November 1994, one day after the 
US launch of the 32X. Even though 
the 32X shared some chips with the 
Saturn, it had no software compatibil-
ity, and the Saturn had no slots for the 
32X’s game cartridges.

Sega of America had been given a 
mountain they could not climb. First 
of all, the entire device was now point-
less in terms of overall strategy. Sec-
ondly, the consumers were wondering 
why it was even being offered to them 
when an entire new console was only 
a few months away. Against this back-
ground, sales of fewer than 700,000 
sold consoles and 40 published games 
could be considered a win, but in real 
life, this was a bitter and expensive dis-
appointment. The add-ons were soon 
in the bargain bins and American con-
sumers, in particular, had very nearly 
had enough of Sega’s useless product 
introductions.

In the shadows of 
the PlayStation
The US launch date of the Saturn was 
set at 2 September 1995, one week be-
fore the PlayStation. However, Sega of 
Japan panicked and wanted to bring 
the launch forward, despite the fact 
that the Genesis was still selling. A 
plan was hatched where Sega contact-
ed a few distributors and agreed on 
advance sales of 30,000 units in con-
nection with the E3 expo in May 1995.

Sega’s surprise attack was a com-
plete and utter disaster. Other dis-
tributors were not informed, which 
caused many of them to become very 
upset. KB Toys, a large retail chain, 
terminated its contract entirely. Buy-
ers of the advance units were only 
offered a few games made in-house 

at Sega, since not 
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even third-party developers were told 
about the changed plans. This meant 
that there were no queues to speak of. 
The final nail in the coffin was Sony’s 
announcement at E3: the PlayStation 
would launch at $100 below the price 
of the Saturn. Sony’s cheaper console 
would be the more popular choice. At 
the same time, launching the Saturn 
efficiently killed off the sales of the 
Genesis, which had already been wan-
ing.

After this battle, the war had been 
lost. The Sony PlayStation decimat-
ed the Saturn on the US and Europe-
an markets. Japan was the only place 
where Sega could compete at all. To-
tal sales of less than 10 million meant 
that the Saturn was the weakest of the 
big three: Nintendo 64 shifted 30 mil-
lion units and PlayStation broke 100 
million. The complex architecture of 
the Saturn made cross-platform ports 
difficult and popular 3D titles looked 
worse on the Saturn almost without 
exception. Sega’s own quality titles 
only went so far.

Sega lost hundreds of millions of 
dollars in the Saturn project, and its 
management was also in turmoil. Tom 
Kalinske left the company completely, 
and even the executives at Sega of Ja-
pan switched tasks in rapid succession. 
It was evident that the company could 
only make one last effort.

An innocent casualty
The Dreamcast was the successor to 
the Saturn and quite probably the best 
console ever developed by Sega. It 
might even be one of the best consoles 
ever, period. Its development was not 
free from drama, however. Sega had 
originally partnered with 3dfx for the 
development of the graphics chip, 
but the plans were leaked. 
The PowerVR2, which 
was chosen as the re-
placement, was 
still very adequate 
for 1998, however. 
Furthermore, Sega 
also brought a solid 
line-up of its own 
games to the Dream-
cast. This makes it all 
the more tragic that 
the Dreamcast also 
carried the burden 
of Sega’s old mistakes 

from the very beginning.
Nevertheless, the US launch 

was excellent, and Dreamcast 
held the record for the most 
consoles sold on launch 
date for a long time. 
Pre-orders alone ac-
counted for over 
300,000 consoles. 
There was even 
some positive buzz 
in Europe, but Ja-
pan remained unim-
pressed. This was a shame, 
since the Japanese had a dispos-
able income that Sega could have used.

Sales were not as great after the 
launch, since the earlier mishaps had 
alienated some of the resellers, as well 
as the publishing giant Electronic Arts. 
The lack of EA’s annual sports titles 
caused many buyers to abandon the 
machine, even though Sega did make 
an effort to replace them with its own 
Sega Sports range. Buyers and resellers 
were still bitter about how quickly Se-
ga’s previous products had become ob-
solete.

The Dreamcast was finally killed 
by Sony’s advance marketing of the 
PlayStation 2. A few years ago, the Sat-
urn had been destroyed by the origi-
nal PlayStation, and now, the mere 
promise of a new version was enough 
to stop Sega’s marketing in its tracks. 
The company had depleted its cash 
reserves with the Saturn, and it had 
no salvos left to counter Sony’s media 
blasts with. Moreover, the Dream-
cast was missing a DVD drive, which 
many buyers wanted in their next-gen 
console. After posting huge losses for 
three consecutive years and selling ten 

million Dreamcasts, Sega threw in the 
towel in January 2001. The DC would 
be killed off and the company would 
resume operations as a game publisher.

An honourable end
The old Sega went down guns blazing. 
Going all in on the Dreamcast ensured 
that it will be fondly remembered by 
gaming historians. The company used 
up its last resources to write a swan 
song that had a lot going for it. The 
original game series created for the 
Dreamcast saw sequels on other con-
soles, and Sega finally turned a profit 
by selling them on Sony, Nintendo and 
Microsoft hardware.

However, a feeling of wasted poten-
tial is also inevitable: the Dreamcast 
showed what Sega could do when its 
different departments were not fight-
ing each other. Many players consider 
it to be the last hardcore games con-
sole. The Sega Saturn, on the other 
hand, is probably the only system that 
failed so hard it also killed off its tech-
nologically superior successor. 
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O ur everyday life is 
assisted by a num-
ber of devices. One 
of them wakes us up, 
another prepares our 

morning coffee and we use a third one 
to travel to work. Devices allow us to 
receive and share information, inspira-
tion and ideas.

Humans have a unique ability to 
build tools and boost productivi-
ty. This characteristic has created an 
environment that we ourselves have 
shaped – civilization. Our way of life 
also tends to create more and more 
objects. Obsolete and faulty objects 
are discarded even though able hands 
could give them a new life.

The healing power 
of a hot air gun
I have spent a decade using hardware 
that others have discarded. The work-
station that I am writing this article on 
has been salvaged from the dumpster. 
Teenagers had been using the comput-
er as a target for paintball practice. It 
was missing a hard drive, but all the 
other components were still inside. 
The computer is a Dell Optiplex 760 
with a quad-core Core 2 processor, a 
GeForce GTX 460 graphics card and 8 
GB of DDR2 RAM. It is by no means 
the latest in hardware, but you cannot 
beat it for the price. And when I found 
it, it was only two years old. Not bad!

When I first tested the computer, it 
booted up, but turned itself off after a 
few minutes. I also tried another power 

supply and got the same result. After 
spending some time thinking about 
the problem, I came to the conclusion 
that one of the memory modules must 
be damaged.

Running Memtest revealed that 
one of the 2-gigabyte DDR2 memory 
modules went haywire after it warmed 
up. I went online to find a solution to 
the problem. I decided to try a popu-
lar method for homebrew repairs of 
graphics cards and game consoles – 
baking them in the oven. However, in-
stead of placing the entire computer in 
the oven, you should use a temperature 
sensor and some tin foil to insulate the 
electrolytic capacitors and plastic parts 
that cannot withstand a temperature of 
200°C (390°F).

I decided to use a hot air gun to heat 
the broken memory module. I placed 
the memory module on two blocks of 
wood and started heating it at a low 
temperature. I gradually increased the 
temperature to the target of 200°C. 
The memory module suddenly let out 
an audible snap, and I was quite sure 
it had died. Nevertheless, I decided to 
test it on another motherboard. I let 
Memtest run for a few hours and, to 
my delight, I noticed that it was oper-
ating properly. I transferred the mod-
ule back to the machine I found – and 
have been using it to this day!

This was clearly a manufacturing de-
fect, as I have not come across a mem-
ory module with a similar problem 
since then. The Internet had pointed 

Hardware

Cindy Kohtala and some loot from the Sortti recycling station.

Salvaging viable hardware
Electronic devices are commonly discarded when they become obsolete. However, a little 
recycling and repairing could extend their service life.
Story by Albert Laine
Images by Nasu Viljanmaa, Andrew Gryf Paterson
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me in the right direction, but there 
were no guides available for reviving 
RAM modules with hot air. 

Successfully repairing the memory 
module made me try the same meth-
od with other components that I had 
found. The technique works with 
graphics cards that display checker-
board artefacts or have no display 
output. I have also used it to revive 
numerous laptop motherboards. Many 
GeForce GTX/GTS 8800 graphics 
cards, which offer high computing 
power, have the same issue.

I have put together a total of 13 dual 
core computers from components 
that I have salvaged and repaired, and 
equipped them with graphics cards 
offering 500–1,000 GFLOPS of perfor-
mance. The server farm in my office 
has never let me down; every job has 
been completed before the deadline.

Game consoles, laptop computers 
and graphics cards commonly use 
Ball Grid Array (BGA) surface mount 
components. My experience is that 
these are often damaged due to the 
European Union’s RoHS directive. The 
regulations forced manufacturers to 
switch to lead-free solder around 2006. 
Unfortunately, however, the high tem-
perature variations present in power-
ful components will break the solder 
joints after 2–3 years – just in time for 
new technology to enter the market. 

In the end, the regulation that was 
intended to preserve Mother Earth 
ended up hurting it by multiplying the 
amount of waste electronic equipment 
and increasing the manufacture and 
sales of new devices. The manufactur-
ers won again.

The power of duopolies
A duopoly is a common situation in a 
capitalist market economy. It refers to 
a situation where two competing com-
panies offer the same service or prod-
uct. In practice, two market leaders 
communicate with each other in order 
to divide the market and to synchro-
nise the releases of new products. De-
spite major differences in architecture, 
the manufacturers offer similar perfor-
mance in the same price range. 

Technological innovations and man-
ufacturing methods advance in leaps. 
The design of a new type of Graphics 
Processing Unit will take years, for 
example. The company also needs to 

generate an income during the de-
velopment, and steady sales are a re-
quirement for this. A few years ago, the 
GPU manufacturers nVidia and AMD 
were sued due to the suspicion of du-
opoly-like cartel agreements. There 
were strong suspicions of market ma-
nipulation, and the accused settled the 
case out of court with millions of dol-
lars. Since there was no court decision 
on the case, the activities were allowed 
to continue.

Consumers have poor memory. Yes-
terday’s state-of-the-art technology 
will soon find its way to the already 
enormous scrap heap. A great exam-
ple of this is the hardware decoding 
of H.264 video. Graphics cards have 
had this feature since 2004. The Ge-
Force 6600, for example, has hardware 

H.264 decoding, but it only works with 
a specific driver version and a specif-
ic version of specific video playback 
software. Once the customer upgrades 
the drivers, playback software or oper-
ating system, the feature stops work-
ing. This made the computer sluggish 
when viewing high-resolution online 
videos, and caused many consumers 
to purchase a new device. If the decod-
ing support had been retained, there 
would have been fewer buyers for new 
hardware versions.

Fix-mod-hack!
I started my life with consumer elec-
tronics in the same way as everyone 
else: as a consumer. When something 
broke, it was taken to the shop for ser-
vice. I became interested in the oper-

Abandoned but powerful graphics cards. Pictured: GF9500, 8800 GT, Sapphire HD 3650, 8800 
GTS and 9800 GT.
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ation of electrical equipment already 
at an early age, even though my family 
did not do any DIY repairs.

The first device I serviced was a VHS 
recorder. The rubber surfaces of one of 
its pulleys had dried up and could no 
longer transfer power. Since the part 
in question was not available over the 
counter, I had to order one from a ser-
vice workshop.

As my next project, I replaced a 
failed rectifier transformer on a televi-
sion. My bag of tricks started growing 
with the help of some professional tips. 
Soon afterwards, my friends heard that 
I offered free repair service and start-
ed bringing me their broken bicycles 

and Minidisc players. Little by little, 
I started putting together computers, 
bicycles and cameras. Practising with 
hardware salvaged from the dumpster 
is a good starting point, since failures 
are not costly.

Belts are the most common me-
chanical parts that fail. You can find 
them in old analogue consumer enter-
tainment devices, such as cassette and 
record players. Belts are also used in 
washing machines and cars. In four-
stroke engines, for example, the valve 
timing is managed by the camshaft. 
It needs to be synchronised with the 
crankshaft and, possibly, other auxil-
iary equipment such as the oil pump. 

The belts will unavoidably loosen and 
replacing them is a regular job for ser-
vice workshops.

Planned obsolescence 
The international company DuPont 
very nearly went bankrupt when it in-
troduced Nylon, one of its best-selling 
products. Nylon tights were advertised 
as durable, and their sales were strong. 
However, sales were suffering due to a 
lack of continuity. DuPont solved the 
problem by making the material weak-
er. This created an entirely new indus-
trial discipline: planned obsolescence 
and lifetime estimates.

This practice is often justified by 
stating that the funds received from 
the sales of new products are spent 
on further development. The fact is, 
however, that international investment 
bankers receive the largest share of the 
profits. A few decades into planned 
obsolescence, we now face a mountain 
of computers, cameras, digital receiv-
ers and routers that are only a couple of 
years old, as well as LCD screens that 
are ”too small”.

You can easily scavenge piles of usable DDR2 
memory modules from discarded computers.

A selection of expansion cards. In the fore-
ground, a laptop graphics card (HD3650) and 
a desktop adapter for the PCI-E-bus found on 
laptops; Wi-Fi adapters in the background.

A server farm made of salvaged hardware. Yesterday’s powerful PCs work well as a team. The 
workstation has a RAID disk server connected over eSATA.



49

The environmental effects 
of electronic waste
Industrialisation and the birth of mass 
production gave us a vast amount of 
wonderful items. However, the man-
ufacturing processes behind them will 
continue to affect the environment for 
much longer than the service life of the 
items. New manufacturing methods 
have reduced the need for raw mate-
rials and the environmental burden 
caused by manufacturing, but at the 
same time, the service life of home 
appliances, for example, has fallen dra-
matically.

Producing new products requires 
a lot of work and several different 
phases. It includes everything from 
the extraction of raw materials to the 
manufacturing, marketing and sales of 
the end product. The problems created 
by mass production are relatively new. 
Only a few decades ago, most house-
hold waste was non-toxic and bio-de-
gradable. At present, future genera-
tions face resource scarcity and severe 

environmental problems as a result of 
our use of resources.

Waste electrical and electronic 
equipment contains several compo-
nents that can be recycled for raw ma-
terials. Some components can even be 
reused, and the utilisation of electron-
ic waste is a growing field of industry. 
Separating precious metals from elec-
tronic waste, for example, requires us-
ing strong chemicals and is not feasible 
in a domestic environment. However, 
on an industrial scale, it is economical-
ly and ecologically more feasible than 
extracting new precious metals.

Technology can be built to last, but 
it is rarely profitable from a financial 
point of view. This is an enormous 
challenge in the field of larger and 
more expensive equipment, such as 
cars. Manufacturing a new car creates 
more pollution than driving an old one 
until the end of its useful service life. 
This makes it more ecological to ser-
vice your car and keep it running for 
as long as possible. However, our con-

sumption preferences are largely not 
rational and they are easily guided by 
marketing.

The future
The amount of waste electronic 
equipment is increasing. The prices of 
new products have fallen and service 
workshops receive less work. Piles 
of resources are taken to the landfill. 
A step motor from an old scanner 
or printer could be used in a hobby-
ist-built 3D printer. A hi-fi amplifier 
from the 1980s is proof that compo-
nents can last for a long time. It still 
has sufficient sound quality and out-
put power for today’s applications. 
Switching to a new digital standard 
would only require replacing a small 

microchip and interface, but device 
manufacturers prefer to market and 
sell an entirely new device. This uses a 
lot of raw materials and energy.

Going forward, we will need to rely 
on heavily standardised modular tech-
nology where accessories are designed 
in a manner where the resources need-
ed for updating and servicing them are 
minimised. In the future, a new model 
of amplifier may be a user-installable 
module that includes new interfaces 
and codecs. New materials are in de-
velopment that allow for constructing 
edible batteries and displays.

The future may be bright, but it re-
quires that we change our attitude in 
terms of waste electronic equipment. 
We must not dump our equipment 
on third world countries after a short 
period of use. Waste electronic equip-
ment is a source of resources that must 
be utilised. 3D printing and milling 
offer enormous potential for manufac-
turing spare parts. I recommend that 
you learn to fix, mod and hack your 
own devices!

MacBook Pro version 1.1 from 2006 and version 2.2. The latter has a 3-gigabyte memory limit.

Digging up dinosaurs
Story by Mikko Heinonen

A s Albert writes above, you can 
find usable and fairly modern 
PC hardware among waste 

electronic equipment. But there are 
more treasures to be found, and some 
of them are even classic: I have sal-
vaged several old game consoles, pro-
cessors, memory chips and even classic 
home computers, such as an Apple II.

Computers from the MS-DOS era 
are a particularly endangered species, 
since they are no longer in active use 
but have not yet been revived by the 
retro computing community. Never-
theless, they can still offer lots of fun. 
For example, you can create a nice ret-
ro workstation by replacing the hard 
drive with a CF card that is too small 
for your photos. You can then use 
this PC to watch old DOS demos or 
even play networked Doom with your 

friends. The Internet is full of legal 
downloads of older games.

For once, you can also be really picky 
and only accept the best components 
for your setup. How about a top-of-
the-line Pentium MMX with L2 cache, 
a motherboard loaded with RAM, a 
Tseng Labs graphics card and a Gravis 
Ultrasound? All of this could be had 
for a few coins from the waste contain-
er of a large company and the bargain 
bin at a thrift store. 
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Building a computer 
in the past
Imagine that you are thrown back in time by hundreds of years. Somehow, you manage to make your 
life comfortable, but it is missing a true purpose – a computer, that is. Could you build one?
Story by Ville-Matias Heikkilä
Images by Ville-Matias Heikkilä, Oona Räisänen, Nasu Viljanmaa, Wikimedia Commons (Klaus Nahr, 
Bruno Barral)

Far out

M odern comput-
ers are electrical 
devices based on 
microchips. It 
would be too easy 

to assume that a computer cannot be 
built without first developing an enor-
mous amount of different tools and 
techniques for the manufacture of dif-
ferent electronic components. Luckily, 
the outlook for a time traveller is not 
as gloomy. You can build a program-
mable computer by using more coarse 
techniques that have been used for sev-
eral millennia already.

In the 1930s, the German engineer 
Konrad Zuse built a programmable 
calculator in his parents’ living room. 
It is currently known as the Z1 com-
puter. It read instructions off punched 
tape and followed them in order to 
perform basic arithmetic operations 
on 22-bit floating point numbers. 
You could save numbers in the work 
memory, read them from user input 
and print them out. In other words, 
it met all the criteria for a computer. 
From a time traveller’s point of view, 
the Z1 was interesting because it was 

completely mechanical: the only elec-
trical part was a motor that rotated the 
mechanism.

Zuse built the mechanism for the 
Z1 using 30,000 thin metal strips that 
he cut with a jigsaw. Combining strips 
of different sizes allowed him to build 
logic gates whose parts moved be-
tween two possible positions, depend-
ing on the positions of the other parts. 
Even the most complex binary logic 
is based on a few different logic gates, 
which means that, in principle, moving 
metal plates could be used to create a 
mechanical version of any computer.

Even the ancient Greeks were capa-
ble of constructing precision mechan-
ics. The Antikythera mechanism that 
modelled the movements of the celes-
tial bodies was based on thirty bronze 
gears, the largest of which had 223 
teeth. The Greeks also built automatic 
theatres, self-opening doors, coin-op-
erated machines, steam engines and 
other nearly magical devices. Hero of 
Alexandria, who lived during the first 
century, was particularly skilled at 
creating useless but highly innovative 
gadgets. It seems clear that the Greeks 

could have constructed the Z1 – pro-
vided that they had the blueprints. De-
signing the machine, however, would 
not have been possible without sym-
bolic algebra and the binary system 
that did not arrive in Europe before the 
second millennium. 

Gears or levers?
Binary logic built with metal strips is 
only one of many techniques that a 
time traveller can use in building their 
computer. Rotating gears and Leib-
niz wheels are also viable alternatives, 
since most mechanical calculators are 
based on them. Gottfried Leibniz de-
veloped the Leibniz wheel (stepped 
drum) in the 17th century for his own 
calculator.

The Analytical Engine, developed 
by the English mathematician Charles 
Babbage in the 1830s, would have 
used gears. If it had been completed, 
it would have been the world’s first 
programmable computer. It could the-
oretically serve as a model for a time 
traveller’s computer, as long as you did 
not copy its structure too exactly. The 
project suffered from megalomania: 
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the memory, for example, was sup-
posed to contain one thousand 40-dig-
it decimals, while Zuse made do with 
64 memory locations.

Although the Analytical Engine 
was never completed, Babbage’s hum-
bler idea, the Difference Engine, was 
turned into working devices already in 
the 19th century. The Swede Per Geor 
Scheutz built a wooden prototype of 
his difference engine in 1843, and was 
later able to sell two metal versions. 
However, the difference engines are 
not programmable computers. They 
are only suited for producing func-
tion tables. Another predecessor of the 
computer from the same century was 
the punched card machine that was 
used in the US census in 1890.

Ropes, rolling marbles or pneumat-
ics are also viable physical foundations 
for a computer. If the time traveller 
decides to invent electricity, they can 
build relays, electron tubes and maybe 
even semiconductor diodes and tran-
sistors. An optical computer, however, 
will most likely require a laser, so it is 
probably not a feasible endeavour.

Those who want to practise building a 
mechanical computer before travelling 
back in time can do so by using Lego 
bricks, for example. The Antikythera 
mechanism and Babbage’s Difference 

The rebuilt mechanism from the Z1. Deutsches Technikmuseum, Berlin.

A small part of the Analytical Engine. Science Museum, London.
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Engine have been built with Legos, and 
the British Lego hobbyist ”Random 
Wraith” has also used them to build 
logic gates. But no one has yet built an 
entire programmable computer.

From simple to complex
Regardless of the physical and theoret-
ical foundation of your computer, you 
should always build it one abstraction 
layer at a time. During the first stage, 
you develop a sufficient selection of 
simple and reliable primary elements, 
such as logic gates. In the second stage, 
these primary elements are used to 
form more complex entities, such as 
memory and addition elements. By 
increasing the level of complexity one 
level at a time, we will finally arrive at 
a machine that can run a program, af-
ter which any higher abstraction levels 
can be implemented in software.

The simplest logic gate is the NOT 
gate that takes in one bit (0 or 1) and 
outputs the opposite bit (1 or 0). Figure 
1 explains the operation of the NOT 
gate on the Zuse Z1. The input bit is 
determined by whether the topmost 
plate is in the upper or lower position. 
The position of the left plate indicates 
the output bit. The right plate is used 
for synchronisation, without which the 
gate will not operate. Mechanical parts 
require careful synchronisation in or-
der to work properly, so you should 
not try to optimise the process by re-
moving the sync bit.

Another gate used by Zuse was OR 
(Figure 2) that takes in two bits. It out-
puts zero if both input bits were zero, 
otherwise, it outputs one. In principle, 
binary logic can be built with only one 
gate type (NAND or NOR), but you 
can reduce the size by adding others. 
The XOR gate is very useful for addi-
tion, for example.

To add together two arbitrary binary 
numbers, we need an element known 
as an adder (Figure 3) that takes in 
three bits (A, B and C) and outputs 
their sum in two bits (D and E). The 
upper bit of the sum (D) can be routed 
to the input of another adder, which al-
lows eight parallel adders to be chained 
together in order to form an addition 
circuit for two 8-bit numbers (Figure 
4).

A long adder chain is not absolute-
ly necessary, however. For example, 
the first Finnish computer ESKO per-
formed additions one bit at a time, 
using a single adder. The smallest and 
slowest model of the PDP-8 minicom-
puter also did this. However, Zuse was 
not as frugal even with the Z1.

Instead of moving plates, you can 
also use rotating shafts and gears for 
the basic structure. This may even be 
a better option in some cases. Accord-
ing to Random Wraith’s observations, 
the preferred elementary operations 
for rotation-based logic are the sum, 
difference, halving and absolute value 
of the number of rotations. These an-
alogue operations can be fairly simply 
used to build digital circuits – both 
logic gates and binary adders.

Memory and buffers
In addition to the calculation elements, 
a working computer requires stor-
age space for the results. The Z1 had 
two registers for this purpose, the R1 
and R2, and RAM memory with 64 
locations. Calculations were always 
performed between two registers and 
the result was saved in either of them. 
There were dedicated instructions for 
handling memory. They copied data 
from the registers into the memory 
and back.

In the Z1’s RAM memory, each bit 
corresponded to a small metal strip 
whose position was altered. The strips 
were placed in a grid that was sur-
rounded by the selector mechanism. 
The selector’s first three input bits se-

lected one of the eight rows on a level 
and the following three bits selected 
one of the eight columns. This allowed 
reads and writes to be targeted at one 
strip at a time. The memory was con-
structed by using 22 of these bit levels 
that were operated simultaneously.

Modern computers run their soft-
ware from RAM, but the Z1 read its in-
structions off of punched tape, which 
was a fairly popular means of storage 
in early computing. However, punched 
tape and punched cards have been 
used for controlling different mechan-
ical devices since the 18th century. 
Barrel organs and music boxes also use 
a type of mechanical drum memory. It 
could be used in computing to save a 
microprogram that performs the com-
puter’s actual instruction set.

Instruction set
The Z1’s instruction set included 
arithmetic instructions, memory han-
dling instructions and number input 
and output commands. The problem 
was the lack of jump instructions. 
Loops had to be performed by either 
writing them out or by taping the be-
ginning and end of the tape together. 
Therefore, you should not model the 
instruction set on your computer after 
the Z1, since there are more advanced 
options.Figure 2: OR gate on the Z1.
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Figure 1: NOT gate on the Z1.
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Figure 3: An adder that calculates the sum of 
two binary numbers.

Figure 4: An adder chain that calculates the 
sum of two 8-bit numbers.
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In principle, a general-purpose com-
puter can be astonishingly simple. 
Many cellular automatons are Turing 
complete, for example. In theory, a de-
vice that winds a memory tape around 
endlessly and changes the state of each 
memory location based on the states of 
the previous cells could be considered 
a computer. In practice, and especially 
in mechanical form, such a machine 
would be extremely slow and labori-
ous and would only provide theoreti-
cal pleasure to even the most hardened 
idealist.

Many hobbyists who have built com-
puters from their elementary compo-
nents have used the instruction set of 
the PDP-8 minicomputer due to its 
simplicity. This could make it a good 
starting point for a mechanical com-
puter. Other ideals could be the Data 
General Nova, TMS1000, RCA 1802 
and MOS 6502. Those who desire a 
higher level of elegance might develop a 
Forth-style stack-based instruction set.

Should I invent 
electricity first?
Mechanical computers have their lim-
itations. Even if you could make one 
completely reliable, it will be hopeless-
ly slow for many interesting tasks. The 
fastest electromechanical computers 
have reached approximately ten ad-
ditions per second, which would also 
be the upper limit for fully mechanical 
ones. Even using electron tubes can in-
crease the performance by a factor of 
several thousand.

Inventing electricity may also prove 
otherwise beneficial for a time trav-
eller. Electricity allows for building a 
telegraph and a radio, which may give 
warmongering ancient rulers the upper 
hand against their neighbours. Once 
the time traveller has sold enough 
communications technology to be re-
garded with favour by the rulers, they 
will also be in an excellent position to 
start constructing a computer.

The first electrical device that a time 
traveller will want to build is the bat-
tery. Chances are that they are carrying 
a mobile phone, and its backlight alone 
will make it an object of immense 
magical power in the eyes of the people 
of ancient times. Charging it is recom-
mended in order to prolong the bene-
fits of the magic power. The electrolyte 
can be sauerkraut, rowan berries, citrus 

fruit or vinegar, for example. You also 
need two different metals for the an-
ode and cathode. Recruiting a skilled 
blacksmith for building the conductors 
and connectors is recommended.

The skills required for constructing 
generators, transformers and relays 
have been around for centuries, but 
our understanding of physics was in-
sufficient and did not allow for their 
invention before the 19th century. An 
electron tube can be built with tradi-
tional artisan skills as regards the glass, 
metal and insulation, but pulling a vac-
uum inside the tube may prove to be 
a problem. A crude form of a vacuum 
pump was already known in ancient 
times, but a time traveller who wants 
to build tube computers will most like-
ly need to develop a better method 
for this. Those interested in semicon-
ductors will most likely need to spend 
decades developing the necessary pro-
cesses before the construction of the 
computer can begin.

How to justify my creation?
It appears that a time traveller with 
sufficient skill and good fortune could 
build a computer in the Middle Ages 
or even earlier. But how would the rest 
of the world view such a gadget?

The boundary between technolo-
gy and magic was very unclear before 
the Enlightenment. In ancient Greece, 
complex machines were mostly seen in 
temples that competed with each other 
and required a steady supply of ”mira-
cles”. In the 16th century, the Italian sci-
entist Giambattista della Porta wrote in 
his book ”Magiae Naturalis” that real 
magic is based on natural sciences and 
has nothing to do with the supernat-
ural. In other words, a time traveller 
should prepare for the fact that science 
and technology will be categorised as 
witchcraft by the majority of the pop-
ulation.

There is no point in trying to ration-
alise the importance of computing, 
either. After all, even most modern 
people do not understand the ideas of 
data processing, since computers are 
only collections of apps to them. The 
fact that the industry pioneers have 
struggled with finding approval for 
their ideas is also indicative of how dif-
ficult the concept is. After Leibniz built 
a working calculator, nobody resumed 
his work for a hundred years. Bab-

bage’s idea on the automation of brain-
work was not understood, even though 
the automation of manual labour was 
already under way. Even in the 1970s, 
the directors of several computer com-
panies did not believe that there would 
be a market for home computers.

In other words, the time traveller is 
not likely to encounter many people to 
whom they could explain the idea of 
a computer, even with great effort. To 
prevent the computer from becoming 
only a secret personal project, the time 
traveller should try to shape the culture 
in a more receptive direction. Becom-
ing a philosopher might be a feasible 
solution. The formal systems could be 
injected with references to ”thinking 
machines” and data processing theory. 
If the era is very narrow-minded, how-
ever, the most radical thoughts should 
only be expressed at meetings with se-
cret societies.

If the time traveller is, instead, 
thrown into the future, where human-
ity has suffered a major technological 
setback, this scenario has a major ben-
efit. If people still exist, they will have 
at least some form of lore related to 
modern technology, which provides 
better prerequisites for understanding 
it. Therefore, a tribal warrior from the 
Neo Stone Age may well be more re-
ceptive to the idea of a computer than 
an ancient philosopher.

The history of computing is often 
told from an engineer’s point of view: 
from mechanical parts to electron 
tubes to transistors and even dens-
er microchips. However, our little 
thought exercise here shows that the 
development of culture has been at 
least as important. Humanity has had 
to undergo several changes in thinking 
before the idea of a computer could 
even come to pass. In the Middle Ages, 
a computer would have been complete-
ly anachronistic and incomprehensible 
– regardless of whether it had been 
made of wood or future components.

We can also reverse our scenario: if 
a time traveller from the far future ar-
rived in our time, how would they view 
the possibilities offered by 2010s tech-
nology? Would they be able to use it 
to create something that is completely 
mind shattering, or would they prefer 
to advance, say, nanotechnology and 
quantum computing before building 
their magnificent invention? 
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E arlier, knowledge of ma-
chine code was an almost 
required skill for game 
and demo programmers, 
for example, but nowa-

days it is mostly generated by high-lev-
el compilers. Being able to read ma-
chine code is still useful, nevertheless. 
You can evaluate the work of the com-
piler and examine and modify pro-
grams without their source code. Pos-
sessing this skill makes the computer 
and its software much more tangible. 
Machine code is still an important tool 
for people working with vintage hard-
ware, microcontrollers and low-level 
security vulnerabilities.

Machines speak 
many languages
Not all machines can understand the 
same machine code. PC processors, 

for example, use x86 machine code 
and mobile devices use ARM machine 
code. A single machine code is also 
referred to as an instruction set or ar-
chitecture.

For the sake of clarity, this article 
focuses on four instruction sets from 
the annals of computing history: 6502, 
x86, 68K and ARM. Since the design 
philosophies behind these instruction 
sets are also quite different, they will 
also provide an overall picture of the 
types of machine code that exist.

MOS Technology’s 6502 is one of 
the most popular 8-bit processors. The 
8-bit computers from Apple, Atari and 
Commodore and the Nintendo NES, 
for example, all use it or one of its 
clones. The 6502’s traditional competi-
tor was the Zilog Z80, based on the In-
tel 8080. AVR and PIC are newer 8-bit 
instruction sets that are mostly used in 

Code

Machine code:
The gateway to the computer’s soul
Computer hobbyists have always considered machine code to be something extraordinary – 
after all, it is the closest a programmer can get to the actual hardware. Although machine code 
is no longer the gateway to programming magic, understanding it will help in comprehending 
technology.
Story by Ville-Matias Heikkilä
Images by Mitol Meerna, Ville Matias Heikkilä, Visual6502.org, AMD

Instructions from different machine code dia-
lects, broken down to bits.

http://Visual6502.org
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embedded systems.
The Intel x86 was made famous by 

the IBM PC compatibles. The original 
instruction set was 16-bit, but it has 
later been radically expanded and re-
newed – first to 32-bit for the 386 pro-
cessor, then to 64-bit at the initiative of 
AMD. Despite the enhancements, the 
different historical sediments are still 
clearly visible in x86 machine code.

The Motorola MC68000 was used 
by most computers that competed 
with the IBM PC until the early 1990s: 
the Amiga, Atari ST and Macintosh as 
well as most UNIX workstations. It is 
based on the instruction sets of larger 
1970s computers and is a pure CISC 
(Complex Instruction Set Computer) 
by design.

ARM is currently the most popular 
instruction set. It dominates the mo-
bile platforms, in particular, but may 
even replace the x86. The instruction 
set was originally used on the Archi-
medes home computer, and it became 
popular since it offered a lot of power 
with a low amount of silicon. ARM is a 
RISC (Reduced Instruction Set Com-
puter). Other RISCs include MIPS, 
SPARC, PowerPC and AVR, for exam-
ple.

Following instructions
Machine code instructions are fairly 
dense strings of ones and zeros. The 
instruction presented on page 54 per-
forms the same task in several different 
machine code variants. Each instruc-
tion adds the number 3 to one of the 
processor’s internal registers, but the 
bit width varies, among other things: 
the 6502’s adc uses 8-bit numbers, 

which means that the largest sum can 
amount to a few hundred, while the 
ARM can count into the billions with 
its 32-bit wide calculations. The num-
ber of bits in a processor or instruction 
set usually refers to the maximum bit 
width of basic calculations.

Strings of ones and zeros are diffi-
cult to read for humans. This is why 
people usually process machine code 
in symbolic form, known as assembly 
language. The assembly representation 
can also be used to guess what the in-
struction does even if the instruction 
set is not known; for example, ad(d) 
refers to addition. The same machine 
code may have several different as-
sembly language syntaxes that are used 
by different assembly compilers or as-
semblers – such as the Intel and AT&T 
syntaxes for the x86.

A machine code instruction usu-
ally consists of an opcode (operation 
code), the addressing mode and the 
operands. The opcode is the ”verb” 
and it corresponds to the first word 
in an assembly statement, also known 
as a mnemonic; add, for example. The 
operands are the ”nouns” that follow 
it: registers, numbers and memory 
addresses. Addressing modes can be 

compared to the forms of declension in 
human languages. They indicate how 
the operand part should be interpret-
ed – whether it is a memory address 
or a number – and provide additional 
attributes; for example, the suffix .b, 
.w or .l on a 68K instruction indicates 
whether the operation is performed in 
8, 16 or 32 bits.

Registers rotate data
In most machine code dialects, the ma-
jor part of the data processing occurs 
inside registers. They can be viewed as 
processor-internal fixed variables. The 
number of registers, their width and 
their manner of use differ substantially 
from one instruction set to another.

The 6502 has a very small register 
set and each register is tied to specific 
tasks. Most calculations will need to be 
performed in the accumulator regis-
ter, A. The index registers X and Y are 
mostly suited for memory addressing 
and loop counting, which A cannot 
perform. In addition to these, the 6502 
only has the stack pointer S, the status 
register P and the instruction pointer 
PC that indicates the memory address 
for the next instruction. PC is the only 
16-bit register; the others are 8-bit. The 
limited register space is supplemented 
by the ”zero page”, the first 256 bytes of 
the memory, and many types of mem-
ory addressing can only be performed 
via the zero page.

The ARM and other RISCs, for their 
part, have a highly symmetrical and 
general-purpose register set. Theo-
retically, any register can be used for 
any purpose. The only exceptions are 
register R15, which is the instruction 

The oldest parts of the register set for the current 64-bit x86 originate from the 1970s.
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pointer, and a separate status register. 
The basic ARM has 16 32-bit registers, 
but most other RISCs have 32 or more 
basic registers.

The registers on the x86 were origi-
nally specialised; for example, only the 
registers BX, SI, DI and BP could be 
used for memory addressing. The 32-
bit update removed some of these re-
strictions. Nevertheless, even the cur-
rent 64-bit operation mode has some 
instructions that are bound to specific 
registers: for example, the single-byte 
command stosb saves the contents of 
the 8-bit AL (accumulator low) regis-
ter to the memory location where the 
original DI (destination index) regis-
ter’s 64-bit extension RDI is pointing 
at.

The basic register set of the 68k is di-
vided into eight data and address reg-
isters D0–D7 and A0–A7, of which A7 
is used as a stack pointer. It also has a 
separate status register, CCR, and the 
instruction pointer, PC. The address 
registers were originally 24-bit, but 

they were expanded to 32 bits in the 
68020. All registers can be used for 
calculations in a fairly general manner, 
but memory addressing must use the 
address registers.

Addressing modes modify 
the instructions
The simplest machine code instruc-
tions have no operands; this means 
that their operation is tied to specific 
registers. The instruction stosb on the 
x86 mentioned above is an example of 
this implicit form of addressing. Other 
examples include instructions for re-
turning from a subroutine (ret, rts) 
and the instructions for setting and 
clearing flags (sec, clc).

The typical number of operands in 
an instruction varies from one ma-
chine code to another. On the 6502, 
most instructions have one operand. 
This operand is usually a memory ad-
dress, in which case the calculation oc-
curs between the accumulator register 
and the memory location. The x86 and 
68k have two operands: a source and 

AND BIC

OR XOR
(EOR)

NOT

Bit operations from the instruction sets dis-
cussed in this article. BIC is used by ARM.

SHL, (SAL, ASL, LSL)

ROL

Operation of the bit shift instructions. Many 
instruction sets have different names for ROR 
and ROL that use the carry digit, such as RCR 
and RCL.

Intel X86 68k AT&T X86

Operand order add destination,source add.w source,destination addw source,destination

Memory addressing add ax,[1234] add.w 1234,destination addw 1234,%ax

Immediate add ax,1234 add.w #1234,destination addw $1234,%ax

Indexed address [ebx+esi+8] 8(a0,d1.L) 8(%ebx,%esi)

Hexadecimal 1234h $1234 0x1234

Location of the instruction jmp $ jmp pc jmp .

Data byte db 123 ds.b 123 .byte 123

Assembly syntaxes are usually quite similar, but they may have some confusing differences. 
Here are a few examples.

ROR

SHR (LSR)

SAR, ASR
8× 4× 2× 1× Unsigned Signed

0 0 0 0 0 +0

0 0 0 1 1 +1

0 0 1 0 2 +2

0 0 1 1 3 +3

0 1 0 0 4 +4

0 1 0 1 5 +5

0 1 1 0 6 +6

0 1 1 1 7 +7

1 0 0 0 8 -8

1 0 0 1 9 -7

1 0 1 0 10 -6

1 0 1 1 11 -5

1 1 0 0 12 -4

1 1 0 1 13 -3

1 1 1 0 14 -2

1 1 1 1 15 -1

Four-bit integers interpreted as unsigned and 
signed, using two's complement.

clc
lda $FE
adc #$34
sta $FE
lda $FF
adc #$12
sta $FF

asl $FE
rol $FF
asl $FE
rol $FF
asl $FE
rol $FF

Handling 16-bit numbers with the 8-bit 6502. 
The example on the left adds the hexadeci-
mal number $1234 to the value of the num-
ber saved at memory locations $FE and $FF, 
the one on the right multiplies it by eight by 
shifting the bits.

lp: cmp r0,r1
    subgt r0,r0,r1
    suble r1,r1,r0
    bne lp

A loop that calculates the largest common 
denominator on an ARM by using conditional 
execution. An Euclidean algorithm subtracts 
the smaller number from the larger one until 
the numbers are equal.
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destination operand for each instruc-
tion. A typical ARM instruction has 
three operands: two sources and one 
destination. Forth-style stack-based 
machine codes can be considered ze-
ro-operand variants.

For most processors, the main part 
of machine consists of operations be-
tween registers. However, immediates 
or different memory references can 
also be used as operands in addition to 
registers.

There are often limits to combin-
ing operands: on the x86, one of the 
operands must always be a register 
or an immediate; there is no direct 
command for ”add value of memory 
location 2 to value of memory loca-
tion 1”. However, memory references 
can be very complex in accordance 
with the CISC philosophy. For ex-
ample, the 32-bit x86 instruction mov  
eax,[ebx+ecx*4+1256] forms a 
memory address by adding together 
a constant and two registers, of which 
ECX has its bits shifted two steps to the 
left.

In ARM-type RISCs, most instruc-
tions can only receive registers or 
immediates as their operands. Mem-
ory handling must be arranged by 
means of dedicated load and store  

The internals of a 6502 processor. The lower half is dominated by an 
8-band arithmetic and register unit, the top part has a microcode table 
that converts the instructions into execution steps. Between them you 
will find the rest of the operational logic, such as branch and flag 
handling.

The internals of an AMD Phenom X4 processor. Most of the surface 
area of the four symmetrically positioned 64-bit cores is taken up by 
cache memory and instruction decoding and sequence logic.

The internals of a Motorola 68000. Can you find the arithmetic and register unit?

lp:  movem (a0)+,(d1-d7)
     movem (d1-d7),-(a1)
     dbne d0,lp

lp:  subcc r2,r2,#1
     ldmia r0,(r3-r13)
     stmdb r1,(r3-r13)
     bne lp

A loop that copies the contents of a memory area in reverse order to another memory area by 
using the register set instructions. 68k on the left, ARM on the right.
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instructions (ld, st, mov) that do 
not perform calculations.

Memory handling on the ARM and 
68k is improved by addressing types 
where the contents of the register are 
incremented or decremented while 
the register is used for memory ad-
dressing. This is handy when scanning 
memory areas.

Instead of using direct addresses, it 
is often preferable to refer to memory 
locations by using the location of the 
instruction as a fixed point. The con-
ditional jump instructions on the 6502 
and x86 can be used to jump forward 
or backward by a maximum of 128 
bytes; this means that the instruction 
only takes up two bytes. Program code 
that does not use direct memory ad-
dresses is called position-independent, 
since it can be executed as is from any 
location in memory.

Computers like to compute
Most processors use binary integers 
by default. The 6502, 68k and x86 also 
offer Binary Coded Decimals (BCD) 
where four bits correspond to each of 
the decimals 0–9. Floating point num-
bers, for their part, are processed with 
separate floating point units that have 
their own registers and instructions.

Negative integers are nearly always 
expressed as two’s complements, where 
the sign is changed by flipping the bits 
around and adding one to the result. 
Therefore, a number that contains only 
ones has a value of -1, like a tape coun-
ter that goes from 000 to 999 when re-
wound. The same bit string can be in-
terpreted as either signed or unsigned, 
and the differences become especially 
apparent during multiplication, divi-
sion and comparison.

All machine codes offer addition 
and subtraction for integers (add, 
sub). The 8-bit machines usually lack 
multiplication and division (mul, div), 
which means that they must be im-
plemented by means of subroutines 
or tables. RISCs usually only contain 
multiplication.

Bit operations include both logical 
bit operations (and, or, eor/xor) and 
bit shifts that come in many forms. The 
functionality of the bit operations is 
presented in the enclosed diagrams. 
The difference between an ”arithme-
tic” and ”logical” bit shifts is that in 
an arithmetic shift, the number is as-

sumed to be signed and its top bit is 
kept in place.

One of the peculiarities of ARM is 
that, while it has no instructions for 
bit shifts, a bit shift can be combined 
with the second source operand of any 
arithmetic operation. For example, 
add r0,r1,r2 asr r3 corresponds 
to the C expression r0=r1+(r2>>r3).

Sometimes, the result of the opera-
tion will not fit in the destination reg-
ister. For example, the sum of two 8-bit 
numbers has 9 bits. The topmost bit is 
usually recorded in the carry flag (C). 
The carry digit is used for chaining the 
calculations: the instructions adc/addx 
and sbc/sbb/subx are additions and 
substractions that consider the carry 
digit from the previous calculation.

What ifs
A conditional jump is the typical ma-
chine code equivalent to the if clause 
in higher-level languages. For example, 
the instruction beq, je or jz will jump 
to the memory address provided as the 
operand if the result of the previous 
arithmetic operation was zero. Before 
the jump, it is common to use a com-

parison instruction, cmp/cp, which 
performs the subtraction without sav-
ing the result. The jump instructions 
are usually named from the point of 
view of comparison; if the result of the 
subtraction is zero, the numbers are 
equal (e/eq).

The information concerning the re-
sult is usually saved in status register 
bits that are known as flags. The carry 
flag mentioned above is one of them. 
Conditional jump instructions exam-
ine the status of the flags and jump if a 
condition is met. Typical flags include:
•  The zero flag (Z) that indicates 

whether the result of a calculation 
is zero.

•  The sign flag (S) or negative flag 
(N) that corresponds to the top bit 
of a result that fits in a register. For 
negative numbers, this is 1.

•  The carry flag (C) that corresponds 
to the bit carried over from an arith-
metic operation.

•  The overflow flag (O or V) is set 
when the extension of the result 
does not fit in the carry flag.

On the 6502, x86 and 68k, each cal-
culation instruction affects the flags. 

EX, EXG, XCHG exchange Exchange the contents of the registers.

LD load Load from memory.

MOV, MOVE move Copy data from register or memory to register or memory.

POP, PL pop, pull Pick the topmost value in the stack.

PUSH, PH push Add to the top of the stack.

ST store Store in memory

ADC, ADDX add with carry/extend Add with carry digit.

ADD add Add.

DEC decrement Decrement by one.

DIV divide Divide.

INC increment Increment by one.

MUL multiply Multiply.

NEG negate Switch the sign.

SBB, SBC, SUBX subtract with borrow/carry/extend Subtract with carry digit.

SUB subtract Subtract.

AND and AND operation by bit.

ASL, SAL arithmetic shift left Shift bits to the left.

ASR, LSR, SHR [arithmetic/logical] shift right Shift bits to the right, extending the topmost bit.

EOR, XOR exclusive or Exclusive OR by bit.

LSL, SHL [logical] shift left Shift bits to the right, extending with zero.

NOT not Reverse the bits.

OR or OR operation by bit.

ROL, RL, RCL rotate [with carry] left Rotate bits counterclockwise [through the C flag].

ROR, RR, RCR rotate [with carry] right Rotate bits clockwise [through the C flag].

Data transfer.

Basic arithmetic operations.

Bit operations.
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On the ARM, the effect on flags is ex-
pressed for each instruction with the 
suffix cc (condition code). ARM does 
not always require conditional jumps, 
since the execution of any instruction 
can be made conditional. For example, 
the instruction addeq operates like 
add, but it is only executed if the zero 
flag is set.

Stacking up other stuff
A normal unconditional jump instruc-
tion may be called jmp, bra or b, while 
a subroutine jump is called jsr, bsr, 
call or bl. Subroutine calls store the 
value of the instruction pointer. This 
allows the execution to resume from 
the place where the subroutine was 
called. The return instruction is typi-
cally called ret or rts.

Older instruction sets typically save 
the return address in a memory area 
known as the stack. Instead, RISCs use 
a register that the subroutine stacks by 
itself if it aims to call other subroutines. 

The linking jump instruction for ARM 
is called bl (branch and link). The link 
register is usually R14 and the instruc-
tion pointer is R15, so the instruction 
for returning from the subroutine is 
mov r15,r14. 

The stack stores other things in ad-
dition to return addresses. Since the 
subroutines use the same registers as 
the main program, the values of the 
register values will commonly need to 
be stored in the stack. Stack space can 
also be reserved for local variables that 
do not fit inside the registers. The x86 
and 6502 have push and pop/pull in-
structions that are bound to the stack 
pointer, whereas the ARM and 68k use 
regular memory handling instructions 
for stack handling. The ARM and 68k 
also have instructions for saving or 
loading a desired register set at once.

Calling conventions are used to keep 
larger programs in check. They define 
how parameters and return values are 
relayed between the main program 

and subroutine, and which registers 
the subroutine is allowed to modify.

The world is memory
From the processor’s point of view, the 
entire outside world consists of mem-
ory. Memory is usually divided into 
memory cells that are the size of an 
8-bit byte and have their own numeric 
address.

There are two main methods for 
storing numbers that consist of sev-
eral bytes. The 68k uses big-endian 
byte order, which means that the most 
significant bits are stored in the first 
byte. The 6502 and x86 use little-endi-
an byte order and store the lower bits 
first. ARM can operate with either byte 
order; little-endian is more common, 
however.

In simpler devices, the physical 
RAM, ROM and control chips have 
fixed areas within the memory space. 
In a VIC-20 program, for example, 
writing to address $900F will always 
affect the colour register of the video 
chip. More complex hardware allows 
for changing the memory structure 
visible to the program.

If the machine has more memory 
than the address space can hold, such 
as over 64 kilobytes in a 6502 based 
machine, banking is required. Banking 
means selecting which parts of the to-
tal memory are visible in specific areas 
of the memory space. Modern operat-
ing systems modify the visible struc-
ture of the memory in order to prevent 
different processes from accessing 
unauthorised memory areas. At the 
same time, the code is prevented from 
modifying the state of the processor by 
switching from supervisor mode to user 
mode during its execution.

Virtual memory means all memory 
visible to the program needs to cor-
respond to physical memory. If the 
address space is large enough, the pro-
gram may request the operating system 
to extend the virtual memory to the 
entire contents of the hard drive, for 
example. When the program tries to 
access a memory location that is not in 
physical memory, this causes an excep-
tion that the operating system handles 
by loading the desired location from 
the hard drive into physical memory. 
From the point of view of the program, 
the entire contents of the drive are per-
manently accessible in memory.

BIT, BT, BTST, TEST bit test Test individual bits (AND without saving the result).

CLf clear flag Clear a flag (e.g. C).

CMP, CP compare Compare (subtract without saving the result).

Scc, SETcc set on condition Set the value of the register to the truth value (e.g. NE).

SEf, STf set flag Set a flag (e.g. C).

Bcc, Jcc branch/jump on condition Jump if the condition (e.g. NE) is met.

BL, BAL branch and link Branch to subroutine, place return address in the link register.

DBcc, LOOP decrement and branch, loop Decrement the value of the register and branch if the condi-
tion is met.

JMP, JP, B, BRA jump/branch Branch to memory address.

JSR, JR, BSR jump/branch to subroutine Branch to subroutine, place return address in the stack.

RET, RTS return from subroutine Return from the subroutine to the main routine.

SWI, INT, TRAP, 
BRK, SYSCALL

software interrupt, trap, 
break, system call

Perform a software interrupt.

HLT halt Halt the processor (wait for interrupt).

NOP no operation Do nothing.

CC, NC no/clear carry Carry digit = 0

CS, C carry set Carry digit = 1

EQ, E, Z equal/zero Numbers equal (zero flag set)

GT, G greater [than] First value > second value

LT, L less [than] First value < second value

NE, NZ not equal/zero Numbers not equal (zero flag cleared)

NS, PL no sign, plus Result not negative (sign = 0)

S, MI sign, minus Result negative (sign = 1)

VC, NO no/clear overlow Overflow flag cleared.

VS, O overflow set Overflow flag set.

Comparison and flags.

Jump instructions.

Other instructions.

Conditions (as part of instructions).
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Memory speed is not a bottleneck for 
1970s processors. On the 6502, for ex-
ample, memory-resident tables and un-
rolled loops should be used in code that 
is critical in terms of speed, if you can 
fit them in memory. For modern pro-
cessors, however, a calculation needs 
to be really complex in order to bene-
fit from a pre-calculated table. Internal 
caches and smart pipelines mean that 
unrolling loops is more likely to slow 
down the code than make it faster.

Controlling devices
Computer equipment includes auxil-
iary chips that have their own control 
registers. On the 6502, 68k and ARM, 
these registers are visible in the mem-
ory space. However, the x86 uses sepa-
rate I/O ports that are handled with the 
in and out instructions.

Interruptions were designed to re-
lieve the processor from the burden 
of continuously polling the states of 
the different devices. A device can 
send out an interrupt request (IRQ) 
that causes the processor to stop what 
it is doing and move to the interrupt 
handling routine. In order to manage 
routine tasks, most operating systems 
execute a timer interrupt a few dozen 
times per second.

In its simplest form, an interrupt 
is no different than a subroutine call. 
The start address for the subroutine is 
fetched from a branch table according 
to the interrupt type and number. In 

modern operating systems, the inter-
rupt also switches the processor into 
supervisor mode. Only an operating 
system that is running in supervisor 
mode can access external hardware, 
and applications perform a non-mask-
able interrupt (NMI) when they require 
assistance from the operating system.

Several instructions at once
The commonly used instruction sets 
go back several decades, but processor 
operation has changed significantly 
during this time. Parallelism has been 
increased, in particular.

Traditional CISC processors run 
only one instruction at a time. The 
execution of an instruction is divided 
into several consecutive stages that are 
coded in the processor’s internal mi-
crocode table. On the 6502, executing 
an instruction consists of 2–8 stages, 
whereas division on the 8086 takes up 
over 100 clock cycles. On these proces-
sors, a programmer can calculate the 
execution time for their code simply 
by adding together the clock cycles re-
quired for the instructions and divid-
ing the result by the clock frequency.

One of the key ideas of RISC archi-
tectures is that the execution of simple 
instructions may occur in parallel. The 
original ARM processor on the Archi-
medes has a three-stage pipeline: the 
processor saves the result from one 
arithmetic operation into a register 
while performing the next operation 

and reading the following instruction 
from memory.

Pipeline technology means that 
jumps are relatively costly. Executing a 
jump means discarding the execution 
stages of the instructions that follow 
it. There are several ways to prevent 
this issue. Conditional execution, used 
by ARM, is one of them: omitting one 
or two instructions is less costly than 
purging the entire pipeline. Branch pre-
diction is a more advanced technique; 
the processor tries to guess whether the 
jump will occur and loads instructions 
into the pipeline accordingly. Specula-
tive execution, on the other hand, ex-
ecutes both options and discards the 
effects of the one that did not occur.

Many processors have several paral-
lel pipelines, allowing them to execute 
consecutive instructions in real time. 
However, consecutive instructions 
commonly depend on each other’s 
results; this means that the program-
mer or processor should arrange the 
instructions in a manner where con-
secutive instructions do not use the 
same registers. In processor automa-
tion, these techniques are referred to 
as out-of-order execution and register 
renaming.

The x86 architecture has offered its 
fair share of challenges for processor 
designers. Since the 1990s, complex 
x86 instructions have been broken 
down into RISC style microinstruc-
tions that utilise the above techniques.

A 6502 example for the Commodore 64. The PRG file generated by the 
ACME cross-assembler can be started directly in the VICE emulator, 
for example.

A 16-bit x86 example for MS-DOS. NASM will compile the code and 
create an executable COM file.

        !to "skrolli.prg",cbm
        *=$0801     ; Start address of the program.

; Obligatory BASIC portion: 10 SYS2061 + final zeroes:
!byte $0b,$08,$0a,$00,$9e,$32,$30,$36,$31,0,0,0

        ldx #0      ; Set counter (X) to zero.

loop0   txa         ; Copy X to A in order to
        and #15     ; calculate X AND 15.
        tay         ; Result to Y; then fetch
        lda msg,y   ; a byte from address msg+Y.

        sta $0400,x ; Copy it to the each
        sta $0500,x ; 256-byte block of the
        sta $0600,x ; screen memory at the
        sta $0700,x ; offset X.

        inx         ; Increment X.
        bne loop0   ; Repeat until rolls back to zero. 

        rts         ; Return to BASIC interpreter.

msg     !scr "read skrolli!!! "

        bits 16         ; Nasm to 16-bit mode.
        org 0x100       ; COM programs start at 0x100.

        mov ax,0xb800   ; Start address of screen memory
        mov es,ax       ; .. to the segment register ES.
        xor di,di       ; Set Destination Index to zero.

        mov ah,14       ; High byte of AX is the color.

loop1   mov si,msg      ; Source Index to start of text.
        mov cx,16       ; Set loop counter to 16.

loop0   lodsb           ; AL <- [DS*16+SI], SI incs.
        stosw           ; AH*256+AL -> [ES*16+DI], DI +2.
        loop loop0      ; CX decs, repeat until 0.

        cmp di,80*25*2  ; Gone through the whole screen?
        jne loop1       ; If not, continue the loop.

        ret             ; Return to the command shell.

msg     db "Read Skrolli!!! "



61

Special instructions for 
special assignments
Although the basic instruction sets can 
more or less do everything, they often 
have special extensions that speed up 
the performance of specific tasks.

Floating point arithmetic has been a 
traditional requirement for scientific 
calculation. The idea is that numbers 
are presented using the mantissa and 
exponent, which offers a substantially 
larger value range than integers. PC 
processors started receiving integrat-
ed floating point units in the age of 
the 80486, but not all game consoles 
and mobile devices had floating point 
hardware even in the 2000s.

Digital signal processors (DSPs) 
were used to speed up the processing 
of image and sound data. Even basic 
processors started receiving DSP-type 
SIMD (single instruction, multiple 
data) instructions in the 1990s. Exam-
ples of SIMD extensions include MMX 

and SSE for the x86 and NEON for the 
ARM.

True to their name, SIMD instruc-
tions use several different data elements 
in parallel. For example, the MMX in-
struction paddb mm0,mm1 interprets 
the values of the 64-bit multimedia 
registers MM0 and MM1 as rows of 
separate 8-bit bytes when adding them 
together. There are also instructions for 
rearranging data elements, for example.

The registers in the SSE and NEON 
are 128-bit, and the elements can also 
be floating point numbers. SSE also 
supports complex floating point oper-
ations such as square roots, and it has 
replaced the old x87 instructions on 
modern x86s.

In the mobile world, in particular, 
the same chip may contain an enor-
mous amount of specialised arithme-
tic logic. For example, the Qualcomm 
Snapdragon 810 contains eight 64-bit 
ARM processor cores, each of which 

has three discrete pipelines and the 
NEON and floating point extensions. 
The chip also has a 288-core graphics 
processing unit, a 32-bit DSP and con-
trol chips that are specific to different 
radio protocols. Your pocket may be 
performing more simultaneous calcu-
lations than an old-age supercomputer.

Hack away!
The most natural, and often the most 
rewarding, machine code projects can 
be found in the field of simple infor-
mation technology, such as old home 
computers, embedded systems and 
electronics platforms like the Arduino. 
They allow for studying the operation 
of the device at a precision of individ-
ual bit shifts and clock cycles, and for 
utilising the specific features of the 
processor in ways that higher-level 
languages do not allow. Cross-assem-
blers running on a different system are 
typically used when writing software 
for these small devices, and emulators 
can also be leveraged for assistance. 
You can easily find ready-made guides 
for your platform of choice.

On larger computers, high-lev-
el compilers offer the easiest route to 
machine code; for example, using the 
-S option in GCC creates an assembly 
source code file that you can examine 
and edit. Compilers also support in-
line assembly i.e. embedding assembly 
sections into high-level language. Op-
timising the speed of your code is no 
longer a viable motivator for learning 
the machine code of modern languag-
es; instead, you can use it to write pro-
grams that are as short as possible.

Other, more direct tools are also 
available in addition to assembly com-
pilers. Machine code monitors and de-
buggers are intended for on-the-fly ed-
iting of memory and memory-resident 
programs. Hex editors can be used to 
examine and modify program files, and 
many of them can display an assembly 
representation of the file contents.

This article was a very concise look 
into the essence of machine code. You 
can use the information contained 
herein to examine assembly code, 
but you should have detailed docu-
ments concerning the instruction set 
and processors available before going 
deeper. The best way to learn the se-
crets of machine code is to select a suit-
able project and start writing code. 

# Define the symbol _start that points the
# linker to the beginning of execution.

.globl _start
_start:

# Initialize the loop counter.

        movq $1024,%rbp     mov r8,#1024

# Execute the system call write(1,msg,15),
# where 1 is the standard output and 15 the length.
# The write call is number 1 in 64-bit Linux
# and 4 in 32-bit.

loop0:  movq $1,%rax        mov r7,#4
        movq %rax,%rdi      mov r0,#1
        movq $msg,%rsi      adr r1,msg
        movq $15,%rdx       mov r2,#15
        syscall             swi 0

# Decrement the counter, jump if not zero.

        decq %rbp           subcc r8,r8,#1
        jnz loop0           bne loop0

# Execute the system call exit(0)

        movq $4,%rax        mov r7,#1
        xorq %rdi,%rdi      mov r0,#0
        syscall             swi 0

# The string to be written:

msg:    .string "Read Skrolli!! "

A Linux example that uses kernel calls for 64-bit x86 (on left) and 32-bit ARM (on right). You 
can compile the program on the target system by using gcc -nostdlib program.s -o program 
or separately by calling the as assembler and ld linker.



DIY

T he last time I took a 
course in electronics, it 
was in comprehensive 
school over 20 years 
ago. I ended up on a dif-

ferent career path, but soldering is one 
of the basic skills that I have needed 
time after time. Knowing how to cre-
ate different cables is useful, and being 
able to repair broken equipment can 
also save money.

Soldering in itself is far from rock-
et science: You use a soldering iron to 
heat up the solder until it melts and 
flows on the spot where you want to 
create a joint. Once you lift off the iron, 
the solder cools down and forms an 
electrically conductive joint between 
the two contact surfaces. A solder joint 
is more reliable than connection meth-
ods based on bare metal contact, such 

as compressible connectors or wire 
wrapping.

When working with electrical de-
vices, it is important to stay away from 
anything that you don’t understand. 
Uneducated hobbyists should keep 
clear of anything that involves AC 
power. This is why we will pick an easy 
project: a digital game controller. In 
terms of solder joints, it requires much 
less precision than devices using print-
ed circuit boards.

The anatomy of a joystick
Most old home computers used the 
Atari pinout in their game controller 
ports. The name comes from the an-
cient Atari 2600 game console. Like 
the 2600 itself, the controller was 
very simple and consisted of only five 
switches: up, down, right, left and fire. 

Each direction corresponds to a single 
pin on the connector, and they also 
have a common ground pin. To move 
your character or make them fire, you 
simply ground the appropriate pin(s).

Digital joysticks are still generally 
available, but they usually only have 
the basic Atari functions. Since this ar-
rangement does not use all 9 pins in the 
connector, a few manufacturers used 
the extra ones for their own purposes. 
For example, an MSX home comput-
er allows using two fire buttons, and 
the joystick port on the Amiga is even 
more versatile. 

In this example, I will be building an 
MSX joystick that has two fire buttons. 
Apart from this, the circuit is identical 
in all old home computers. It should be 
noted, however, that you should never 
connect an MSX joystick to an Amiga. 

Entry-level soldering
Building electronics is a fun hobby and it’s beneficial 
to understand its principles. This story is for those of 
us who have always wondered whether they should 
try to build something.
Story by Mikko Heinonen
Images by Nasu Viljanmaa, Mikko Heinonen

Image 1. The required tools. Image 2. Raw materials.
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The line that goes to the second fire 
button in an MSX is connected to +5 
volts on an Amiga; by pressing the but-
ton, you are grounding the +5 volt line, 
which may damage the Amiga.

You can easily get the pinout for 
your own device by using your search 
engine of choice. The query ”MSX joy-
stick pinout”, for example, will provide 

you with a clear picture of the pin or-
der required here. The pins are num-
bered from 1 (top left) to 9 (bottom 
right) when viewed from the front. Pay 
attention, as it is very easy to create a 
mirror image of the required connec-
tor.

Tools in order
You will not get very far without 
proper tools. At a minimum, you 

will require a soldering iron designed 
for electronics (preferably, a temper-
ature-controlled soldering station), 
some solder and a pair of side-cutting 
pliers or a wire stripper. You also need 
a moist sponge or a copper cleaning 
pad for your soldering iron. Buying a 
multimeter is also a good idea, as they 
are very cheap and can be highly use-
ful. A small strip of sandpaper makes 
prepping the soldered surfaces easier.

The soldering iron needs to be at the 
correct temperature. If the iron is too 
hot, it will melt the insulation on the 
wires; if it is too cold, not even the sol-
der will melt properly. 350°C (660°F) 
is a good starting point. Increase the 
temperature when using thicker wire 
or thicker solder.

Image 2 shows the materials required 
for the controller. In theory, you could 
build the entire thing by using indus-
trial microswitches, but in the interest 
of user comfort, I suggest you purchase 
an arcade stick body and two extra fire 
buttons of your choice.

The connecting cable will be built 
from an Atari joystick extension cable. 
There are two reasons for this. First-
ly, soldering a 9-pin connector can be 
slightly frustrating for a beginner. Sec-
ondly, stores usually only stock these 
connectors with large plastic cases. On 
many machines, the joystick ports are 
located so close to each other that the 
connector will not fit in the port, es-
pecially when using another controller 
or mouse at the same time. In addition 
to the above, you will need a single 
strip of wire in order to connect the 
ground pin. This can usually be scav-
enged from a broken device you have 
at home.

All parts are available online. A basic 
arcade stick controller will cost around 
$10, the buttons will be $2–3 per piece 
and the cable will set you back around 
$5. You will also need to buy a case, 
unless you already happen to own 

Image 3. A multimeter shows that the ends of 
the wire are connected.

Image 5. Soldering iron in place.

Pin MSX

1 brown UP

2 orange DOWN

3 grey LEFT

4 black RIGHT

5 red –

6 yellow FIRE 1

7 blue FIRE 2

8 white –

9 green GROUND

Table 1. The pin arrangement of a generic ex-
tension cable.

Image 6. Victory!

Image 4. Sand the surfaces lightly before soldering.
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something suitable. For example, if 
you have a broken 3.5" external hard 
drive, you can remove and recycle the 
broken drive mechanism and build the 
joystick in the enclosure.

Get your pins straight
Since we will be cutting a few corners 
when building the cable, we first need 
to determine the pin order of the ex-
tension cable. Use side-cutting pliers 
or a wire stripper to cut the male end 
of the extension (the one with met-
al pins – not the one with holes). You 
can discard the male connector, since 
we will only be using the female end 
and the cable itself going forward. Strip 
the outer insulation from a length of 
approx. 20 cm (8 in). Then, strip the 
inner insulation on each wire from a 
length of 2.5 cm (1 in). Make sure that 
the wires are not touching each other.

Take out your multimeter and switch 
it to resistance measurement (indicat-
ed by the Omega (Ω) symbol). Wrap 
a small length of solder around one 
of the multimeter probes. Then, push 
the section of solder into the holes on 
the female end of the extension cable 
one at a time, going through each pin 
(1–9) in order. For each hole, connect 
the wires into the second probe one at 
a time until you find one that shows 
a reading on the multimeter (a resist-

ance is measured, which means that 
current is flowing through the wire). 
Note the wire colour that matches each 
pin. Then, use the pinout of the con-
troller you want to build to determine 
where the wires need to be connected. 
Table 1 shows an example of an exten-
sion cable bought from eBay and the 
MSX joystick pinout.

Before starting to solder, tie a knot 
in the extension cable at a distance of 
some 5 cm (2 in) from the point where 
you started to strip the outer insula-
tion. The knot will later act as a ca-
ble clamp. Its correct location will be 
shown later.

Wire it up
Switch on your soldering iron and hold 
the stick in your hand. Since all of the 
switches will be connected to ground, 
it makes sense to connect them to each 
other first and then to the connecting 
cable. I will be using a green ground 
wire in the example. You can use any 
colour you like, as long as you remem-
ber what it is.

Take a look at your arcade stick and 
determine the type of switch that it 
uses. If the switch has only two termi-
nals, you can connect them in any or-
der. If there are three, they are marked 
NO (normally open) and NC (normal-
ly closed). For this project, we need to 

use the NO terminals. The NC termi-
nals are connected when the switch is 
not activated, and this is the exact op-
posite of what we want.

The contact surface of the terminal 
is most likely oxidised and usually cov-
ered in protective grease. Solder will 
adhere very poorly to such a surface. 
Before attempting to solder, take a 
small piece of sandpaper and rough-
en the surface. Then, pull the wire 
through the hole in the terminal and 
position it so that it stays in place, as 
you will need both hands for the next 
step.

Press the iron against the contact 
surface and use your other hand to 
feed solder from the roll to the top of 
the iron. When the solder melts and 
attaches to the wire and roughened 
surface, lift off the iron. Do not keep 
the iron on the surface for too long in 
order to prevent it from heating up the 
inside of the switch. 

If you followed the instructions 
above, you have now created your first 
solder joint. It might not be pretty, but 
if you have solder on the wire and the 
contact surface, and the wire does not 
come loose when you tug on it gently, 
then the joint is adequate for the pur-
pose. Adding too much solder will not 
improve the contact – quite the oppo-
site, in fact.

Image 7. Wire stripper. Image 8. Wire with insulation stripped in the middle.

Image 9. Three wires connected. Image 10. Switch directions, viewed from below.
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Next, go round the entire control-
ler and solder the ground wire to one 
pin on each switch. You can save some 
additional time by using a wire strip-
per. Strip the wire in the middle, pull 
it through the hole and then solder it 
in place at the stripped section. This 
way, you will not need to cut the wire 
at every terminal and solder two wires 
at each of them.

In the fourth switch, you need to sol-
der two other wires as well: the ground 
wire coming from the connector and 
the ground signal for the fire buttons. 
Strip each wire at a length of some 5 
cm (2 in), wrap them together, push 
them through the hole in the switch 
and solder them in place.

Check your bearings
Next, you need to determine where to 
connect the signal wires. First, turn the 
controller so that the stick is pointing 
upwards. Then, decide which direction 
is up and mark this on the controller.

Next, turn the controller upside 
down and find the switch that is 
pressed when you push up on the stick. 
Do this for the other directions and 
mark them on the bottom of the con-
troller. This is very important if you 
want your character to move correctly.

Now solder the wires for the different 
directions to the switch terminals. The 
principle is the same as for the ground 
wire: strip the insulation, roughen the 
surface, thread the wire, solder.

Encapsulation stage
Before soldering the fire buttons, you 
should install the controller inside a 
case, since most buttons are attached 
from below. Since my skills in plastic 
work are even poorer than my solder-
ing skills, I will only be providing rudi-
mentary instructions.

Unscrew the ball from the top of 
the controller, drill a 12-mm (0.5 in) 
hole for the shaft and insert the shaft 
through the hole. Reattach the ball and 
drill holes for the screws that fasten the 
body of the controller. Next, drill holes 
for the buttons (approx. 30 mm or 1 
1/5 inch, depending on the size) and 
tighten them in place. Finally, create 
a small gap for the cable on the outer 
wall of the enclosure. A round file is 
quite useful for fine-tuning the holes 
– and a small electric grinder is very 
useful.

You can also 3D print the case; Thin-
giverse has a few models that you can 
use, for example. The equipment en-
closure that I am using is large, ugly 
and hard to work with, but I already 
bought one, so we will use it.

Once you have attached the control-
ler and buttons, attach the other end 
of the ground wire to one of their ter-
minals and solder it into place. Then, 
solder the signal wires for the buttons. 
In Image 11, I have stripped the insu-
lation on the ground wire completely 
starting from the first button in order 
to make it fit through the holes. This 
does not matter since all the other 
wires are insulated.

When closing the case, make sure 
that the knot we made earlier is placed 
on the inside of the case. It will act as 
a cable clamp and prevent the solder 
joints from coming loose even if the 
controller is hanging by the cable.

Done!
Our functionalistic game controller 
box is now done. In order to ensure the 
electrical operation, you can use the 
method that I talked about at the be-
ginning of the article – only now, you 
need strips of solder on both multim-
eter probes. Connect one probe to the 
ground pin and the other probe to the 
pin you want to test. In particular, you 
should make sure that you have not 
connected any live pins (pin 5 on the 
MSX, 7 on the Amiga) by mistake.

Naturally, you can improve the con-
troller as much as you like. Better-qual-
ity sticks and buttons are widely avail-
able, and you can build the case out 
of wood, for example. The principle 
of operation remains the same. If you 
feel that you are not ready to solder yet, 
you can also use crimp connectors for 
attaching the wires. 
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Image 11. Buttons soldered into place.

Image 12. It may be ugly, but it works.



2016.1E66

A physical space re-
served for building is 
especially important 
for those living in cit-
ies where workspace 

for projects is difficult to come by. Ma-
chines and equipment are expensive to 
buy, and a hobbyist only needs most of 
them every now and then. Sharing the 
costs makes sense. Moreover, meet-
ing like-minded people and working 
on projects together is fun. Currently, 
there are hackerspaces in at least seven 
cities in Finland. 

Hackerspace is a difficult term. The 
word originates from ”hack”, which 
can be understood very broadly – it 
can mean writing software or creating 
jury rigs. The term originates from the 
Massachusetts Institute of Technology, 
and it was already used in the 1960s. 
Recently, the term ”hacker” has been 
used to refer to criminals who pene-
trate an information network. In this 
article and in the hackerspace scene, 
the word ”hacker” is used in its orig-
inal meaning.

What do you want 
to build today? 
The most common projects built in 
hackerspaces are related to informa-
tion technology, electronics or robot-
ics. However, calling a hackerspace 
a computer club, electronics club or 
robotics club would be an oversim-
plification. A hackerspace offers its 
members a space to 
build whatever they 
want. If the motiva-
tion is there, noth-
ing is stopping you 
from cooking food 
or knitting a pair of 
socks. Indeed, most 
hackerspaces are expanding towards 
music, visual arts, biotechnology and 
traditional handicrafts. Examples of 
these include Helsinki Hacklab’s cours-
es in wearable electronics and different 
workshops on electronic instruments.

Hacking projects come in many 
shapes and sizes. Utilitarian hacking 
involves repairing broken equipment 
or building new equipment in order 
to save money, such as repairing elec-

tronics or building a valve amplifier 
from a kit. When a product that suits 
your individual needs is not available, 
you can build it yourself – from soft-
ware projects to furniture customisa-
tion. The building projects can also be 
related to another hobby; for example, 
a photographer may want to build a 
gyroscopic stabiliser or a rail for time 

lapse photography. 
You can also set your 
artistic side free by 
constructing a syn-
thesizer or coding 
demos, for example.

The most impor-
tant part is the en-

thusiasm for learning new things. Or 
course, you can buy a cheap thermo
meter at the supermarket, but one that 
uses an Arduino is a thousand times 
fancier and will teach you new skills. 
Building and experimenting is fun by 
itself, as long as you have the parts, 
tools and space available. Could I use 
a bucket and a smoke machine to build 
a smoke ring cannon like the one on 
YouTube?

Culture

At Gyro Gearloose’s workshop
– hackerspaces and the thrill of making things
Hackerspaces are common spaces that are designed for building different projects. They are 
available to all members. What you do is not as important as your genuine motivation and 
interest in making things. Hackers are driven by a will to learn and do things that, perhaps, no 
one else has done before. 
Story by Ville Ranki  Images by Ville Ranki, Juuso Metsävuori

” A hacker is someone 
who uses a coffee 
maker to make toast.

– Wau Holland,  
founding member of  

Chaos Computer Club.
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The need for room
Of course, some projects can be built 
at home. Writing software only re-
quires a computer, but when elec-
tronics or mechanical work are added 
to the mix, the tools no longer fit on 
the living room table. People living in 
small urban homes usually cannot set 
up a hacking corner in their homes; 
instead, working on projects requires 
taking out the tools before starting the 
work and storing them again after the 
work is done. This raises the threshold 
for starting a project, and often leads to 
the first step not being taken. 

Moreover, mechanical work nearly 
always makes lots of noise. Using a cir-
cular saw or angle grinder in a flat is a 
sure way to get a negative reaction out 
of your neighbours. Sawing, drilling 
and laser-cutting materials create dust 
and smells that may also disturb them. 
Even a 3D printer, which seems harm-
less enough, will make a sound that is 
comparable to an old matrix printer.

The most extreme hacks involve 
welding, casting metals and handling 
corrosive chemicals. These activities 
require dedicated facilities and tools. 
The hackerspace in London, for exam-
ple, has a dedicated storage for scrap 
bicycles and their parts as well as weld-
ing equipment that can be used to as-
semble new bikes from the parts. 

An extensive stock of components 
and parts has been found to be sur-
prisingly useful in practice. Hacking 
shifts into high gear when all the parts 
can be found off the shelf and you no 
longer need to look for them in the 
store or order them online. Most pro-
jects are not designed that precisely in 
advance, and the contents of the parts 
shelf can offer new ideas for the imple-
mentation. Many projects start with 
an interesting discovery in the parts 
pile. Hackerspaces commonly have 
decommissioned equipment that, to a 

non-hacker, might appear to be waste. 
But good-quality waste electronic 
equipment can be a donor for displays, 
switches, components, motors and 
other useful parts. Starting a hack-
erspace also results in financial gain: 
buying tools and machines together is 
much cheaper.

Friends and education
For some hackers, a hackerspace is 
primarily a social space for meeting 
friends and making things together. 
The same group of people commonly 
go out to dinner, arrange get-togethers 
and do other things. Hackers from dif-
ferent cities also cooperate; in Finland, 
examples of this include the Partyhat 
project and Hackerspace Summit Fin-
land, which is arranged in Tampere in 
the winter. The different hackerspac-
es also have shared stands at public 
events. In a way, this allows hacker-
spaces to prevent social exclusion. At 
a hackerspace, no one has to pretend 
they are less geeky.

Training is an important part of the 
activities at a hackerspace. A typical 
form of this is an evening of training 
related to a specific topic that is held at 
the hackerspace. Training can also be 
arranged for other communities, and 
their members can be invited to talk 
about an interesting topic. Examples 
of training themes include the basics 
of electronics and programming, Ar-
duino projects, 3D printing and using 
Blender 3D. Arranging training events 

always requires a bit of effort, but the 
events are always very popular. The 
trainer does not always need to be a 
specialist; basic knowledge of the topic 
and a willingness to share this knowl-
edge are sufficient. The most informal 
training events are workshops were 
people work in groups and learn about 
a topic while the workshop leader pro-
vides assistance in case of problems.

Hackerspace Summit Finland under way in Tampere.

Characteristics of 
a hackerspace
•	 Openness 

Anyone can join a hackerspace. 
Schools and companies, for example, 
have always had laboratories and 
workshops, but access to them is 
usually limited.

•	 Independence 
A hackerspace makes the decisions 
concerning its operations and is 
independent of external parties, such 
as landlords or sponsors. 

•	 Equality 
Hackerspaces typically have a fairly 
flat hierarchy and all members are 
equal. The board is only responsible 
for the important decisions and 
matters related to money. Major 
decisions and purchases are subject 
to a vote. For example, members are 
allowed to improve the space – ac-
cording to their own judgement and 
at their own responsibility – without 
asking anyone.

Hackerspace vs. Hacklab
In Finland, most hackerspaces call 
themselves hacklabs. This is a synonym 
of hackerspace, like makerspace and 
fablab. Hacklab is easier for Finns to 
pronounce, but hackerspace is a more 
global brand. You can name your asso-
ciation however you like.
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How to set up a hackerspace
1. Set up a core group
You will need 3 to 5 interested people 
and some visibility online. Create a 
simple website and a mailing list. In 
Finland, you can set up your own city.
hacklab.fi domain under hacklab.fi. 
Add your city to the list at hackerspac-
es.org. Network with other hackers on 
IRC, by visiting other hackerspaces 
and by attending Hackerspace Sum-
mits.

2. Gather interested people
Arrange meet-ups at cafes, for example, 
and get to know each other. Advertise in 
places where you might find interested 
people. Schools, hobby clubs, workplac-
es and even bulletin boards at super-
markets are good places to advertise in. 
Gather contact details from people who 
want to join after you have acquired fa-
cilities for your hackerspace.

3. Set up an association and 
apply for financial support
In some countries, you need to be reg-
istered as an association to open an ac-
count and sign a lease agreement. It is 
a good idea to copy your rules from an 
existing hackerspace in order to ensure 
that they are approved. Seeking finan-
cial support should also be started at 
this point. Good relationships, persis-
tence and a bit of luck will help. Note 
that it may take a long time to get the 
actual support after submitting your 
application. It is possible to get started 
without any external financial support, 
but it will make starting a lot easier.

4. Acquiring the facilities
Once you have enough interested peo-
ple, think about the maximum sum per 
month that you are willing to pay for 
the membership. This will give you an 
idea of the type of lease that you can af-
ford. Study the prices in the target area. 
In cities, the best locations are usual-
ly within walking distance from the 
centre in order to allow long-distance 
guests to reach the place. Contact the 
city, other hobbyist clubs and other 
similar parties to enquire about free 

locations. Getting a place for free or 
for a nominal rent would, of course, be 
a stroke of luck. Remember to include 
the cost of an Internet connection in 
your budget. The most important fea-
tures for the facility are 24-hour access, 
permission to make noise and a work-
ing toilet. As the number of members 
increases, electronic access control will 
become a necessity.

5. Equipping the facilities
In the beginning, the association will 
probably not have any assets, and the 
facilities will need to be equipped with 
donations from the members. Used 
office furniture and IT equipment 
can be found for free, and members 
can volunteer their time for renovat-
ing the premises. At this point, mem-
bers will usually donate their tools or 
materials to the association or place 
them on long-term loan. More expen-
sive devices (such as 3D printers) can 
be financed with the income received 
from membership fees or by arranging 
a fundraiser among people interested 
in the purchase. Those who do not 
participate in the fundraiser can be re-
quested to pay a small fee for using the 
device.

6. Growing your membership
Increasing the number of members is 
important in the beginning. Reserve a 
stand at every event that might attract 
potential members. Local events are 
especially important, and remember 
to include events that have a non-tech-
nical audience. Prepare for the fact 
that most people have never heard of 
hackerspaces and that you will need to 
explain it briefly and in simple terms. 
Invite local journalists to write about 
you. Arrange open nights (Tuesdays 
are a common choice) during which 
anyone can visit and learn about your 
activities. Arrange open nights, train-
ing and theme nights. Remember to 
tell your guests about what you do and 
involve new members in your activities 
from the beginning. 

Larger hacker projects 
from Finland
•	 Partyhatwork – A free-form hat 

used at public events. It communi-
cates with other hats over the XBee 
network. The hats have multicolour 
LEDs and they can be used to create 
synchronised ”demo effects” over 
the network. Built in cooperation 
with several hackerspaces.

•	 The Chernobyl Simulator – Helsinki 
Hacklab’s exercise in Soviet retro and 
multimedia. Includes a 2 m by 2 m 
”reactor lid” among other things.

•	 R100 – A remote-controlled robot 
built in the frame of an electric 
wheelchair. It can survey its environ-
ment and move autonomously with 
the assistance of a laser scanner.

•	 Ice sled – An ice vehicle that consists 
of a snowboard and four skis con-
nected to a snow kite.

•	 Vacuum robot art project – Assist-
ing the artist Harri Larjosto in the 
creation of a work where modified 
vacuum cleaner robots act as a 
moving platform.

•	 Metro display – Aiming to recreate 
Tetris on a decommissioned metro 
display. At the moment, printing text 
is already possible and the situation 
is developing daily.

•	 24×16 LED matrix - 1.20 × 0.40 m. 
16 levels of brightness per pixel, 4 
NES controllers, i2c, was presented at 
Assembly 2012 in 8x48 format.

•	 ”Elovalo”, a work of art consisting 
of three LED cubes with 8×8×8 
pixels in each. The work was placed 
in Jyväskylä’s church park as part 
of the City of Light event in the 
autumn of 2012. The cubes operate 
autonomously with batteries and 
an AVR microcontroller handles the 
arithmetic operations. 

•	 LazorTouch – A video wall con-
trol system built for the Vapriikki 
Museum Centre in Tampere. It allows 
the visitor to select a video clip by 
standing on a spot painted on the 
floor. Uses a laser scanner.

http://hacklab.fi
http://hackerspaces.org
http://hackerspaces.org
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B ack in early 1989, the 
Finnish computing 
magazine MikroBitti 
snatched what would 
become the greatest 

journalistic coup of its 30+ year his-
tory – an international exclusive on 
the mega game Illuminatus by a little 
known German developer.

Even in the age before the Web, this 
story of Illuminatus went viral across 
Europe, with publishing houses and 
press flooding MikroBitti’s phone 
lines. Illuminatus was a game for the 
annals, the magazine gushed, and cer-
tainly in a way it was.

Alas, despite the great publicity, it 
would take 27 years before the public 
could play the game.

A trek to remember
The premise of Illuminatus was cer-
tainly nothing too fantastical for 1989. 
In that age of ever more ambitious 
MicroProse flight simulators, a five-
disk vector graphics based space flight 
game for the Atari ST with a 200-hun-
dred-page manual and a bunch of 
paper maps and keyboard overlays 
sounded par for the course. Indeed, 
what made Illuminatus plausible was 
its relative technical modesty. It would 
merely combine several hit game types 
of its era and do it well.

Like its contemporaries, Elite and 
Starflight, Illuminatus would use pro-
cedural content creation to generate a 
vast universe, far beyond the storage 
capacity otherwise available. Nonlin-
ear gameplay would allow the player 

EPIC FAIL 

The greatest game that never was

ILLUMINATUS

PLAYABLE 

DEMO ON THE 

COVER DISK!

It was supposed to be 
the space opera of the 
decade – not a game, 
but a lifestyle.
Instead, it became a 
meme.
Story by Janne Sirén
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to literally plot their own course. The 
player would start with one spaceship, 
a Cod Mk.I, fly around in this universe 
hauling cargo and, over time, accumu-
late money for more advanced vessels 
and missions.

This familiar setup already con-
tained hints of greatness, though. Plan-
ets were not merely target destinations 
for those epic space treks; a Galileo 
MK-7 shuttle was to be taken down for 
flight simulation over Virus-like frac-
tal terrains of plains, mountains and 
colonies. Illuminatus promised to be a 
great solo game.

Civilization in space
What truly set Illuminatus apart, how-
ever, was how the game was to pro-
gress. The procedurally created uni-
verse was not only immensely large, 
it was also alive. Artificial intelligence 
ran everything from space pirates and 
colonies to an empire’s military fleet. 
The player’s choices would affect how 
the universe around them changed 
and the universe would also evolve on 

its own.
As the player gained power and 

prominence, the game would eventu-
ally move from space and flight simu-
lation to a tactical level and then final-
ly to a strategic level, where the player 
would control entire armies and fleets, 
nations and worlds. Finances, diplo-
macy and even political assassinations 
would come into play.

Due to the hardware considerations 
of the era, the game’s vantage point 
would, at this stage, move to that of 
an Empire-like strategy game. Massive 
surface wars and space battles consist-
ing of thousands of ships were to be 
fought out between both computer op-
ponents and up to four human players 
over a modem.

A star too far
That was the promise, anyway. Mikro-
Bitti interviewed the game’s developers 
Jürgen Sternreise and Erik Dorf from 
Enterprise Games, who were said to 
have mortgaged their houses and cars 
to finance the game, and published a 

few screenshots. The article generated 
massive interest, with several game dis-
tributors calling MikroBitti for more 
information, including the British 
company CRL, which was impressed. 
Illuminatus also soon appeared for 
pre-order in mail-order catalogues.

However, as it happened with many 
ambitious mega games of the 1980s, 
hype got the better of Illuminatus and 
by autumn it was all but forgotten 
commercially. Persistent rumours talk 
of Jürgen later lamenting the lack of 
online crowdfunding back in the day. 
Thus, globally, Illuminatus never left a 
lasting mark, but in Finland the prom-
inent publicity made it into a cult phe-
nomenon.

It is not surprising then, that the 
abortive relaunches of Illuminatus 
have also started from Finland. The 
first resurgence of Illuminatus came in 
the 1990s, when the demo group Fu-
ture Crew – the minds behind the likes 
of Futuremark and Remedy – started 
to work on Illuminatus for Windows. 
In the end, nothing came of it, either.

MikroBitti published the first exclusive report on Illuminatus back in 1989.
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In a further twist, this activity report-
edly spawned open-source projects. In 
2014, Skrolli magazine unveiled the 
rift between Future Crew and com-
munity versions from FreeIllumina-
tus and OpenIll. According to Skrolli, 
Future Crew had actually abandoned 
their planned commercial version of 
Illuminatus due to death threats from 
one of the community projects.

We want to believe
Of course, one fact has greatly contrib-
uted to the elusiveness of Illuminatus: 
the whole thing was an April Fool’s 
Day prank by MikroBitti for their 
4/1989 issue. Skrolli’s 1 April 2014 re-
port on the fictitious community ver-
sions was also merely a tribute to this 
highly successful ruse. The prank was 
masterminded by MikroBitti game 
reviewer Niko Nirvi in 1989 and the 
follow-up by Skrolli’s Editor-in-Chief 
Ville-Matias Heikkilä in 2014, both 
with their respective teams.

Few seemed to get the joke in 1989. 
The lack of mainstream Internet guar-
anteed several weeks’ worth of atten-
tion for the hypothetical game, until 
MikroBitti came clean later that year. 

Thus, for quite a while, Illuminatus 
seemed to exist. The commercial in-
terest generated back then and the 
subsequent Finnish cult following that 
has lasted to this day are very much 
real. Regionally, at least, Illuminatus 
remains a solid predecessor of Internet 
memes.

Riding this wave of popular sen-
timent created by the prank, Future 
Crew really attempted to put Illumina-
tus together in the 1990s before giving 
up on it, though Skrolli made up the 
part about the death threats. Unfortu-
nately, neither the FreeIlluminatus nor 
OpenIll projects exist, but, of course, 
many other games have implemented 
and surpassed the features of Illumina-
tus since.

The last laugh
The butt of this joke is that, in an ef-
fort to create a video for the continua-
tion of the Illuminatus meme for April 
Fool’s Day 2014, Skrolli did in fact 
develop a private, playable PC version 
of a space flight scene in Illuminatus. 
Skrolli recreated the Illuminatus vis-
uals, staying as true as possible to the 
1989 MikroBitti screenshot mockups 

made originally by Petri Teittinen in 
Deluxe Paint II.

So, in the end, the prank made itself 
real – sort of. We have kept this version 
to ourselves until now, but with the 
launch of Skrolli International Edition 
in April 2016, for the very first time 
ever, you can find this playable demo 
on the virtual cover disk of this issue 
of Skrolli! Just scan the QR code, an-
swer the password question and enjoy 
Illuminatus.

The Illuminatus of 1989 was very 
controversially – albeit fictitiously – 
made only for Atari ST. Ironically, what 
little existed was actually designed on 
an Amiga and now runs on PC. You 
see, platform wars, like Illuminatus, 
never die. 

FreeIll is one of the two Illuminatus clones whose rift Skrolli uncovered in 2014.
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